• 제목/요약/키워드: low platinum loading

검색결과 12건 처리시간 0.022초

Nafion 함량이 데칼전사기법을 통해 제작된 고분자 전해질 연료전지의 MEA 성능에 미치는 영향 (Effects of Nafion Contents on the Performance of MEAs Prepared by Decal-Transfer Method)

  • 김경희;조은애;한종희;김성현;엄광섭
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.125-133
    • /
    • 2012
  • Nafion ionomer located in electrode helps to increase the platinum utilization and proton conductivity. To achieve higher performance in PEMFCs, it is important an optimum Nafion content in the electrode. As the platinum loading and fabricated method depend on the optimum Nafion content. In this study, we have examined the interrelationship between platinum loading and Nafion content fabricated by decal transfer method. For electrodes with 0.25 and 0.4 mg/$cm^2$ Pt loading, best performance was obtained at 25 wt.% Nafion ionomer loading. It is also found that MEA with 0.25 mg/$cm^2$ Pt, the optimum Nafion content appears differently at low and high current density.

The effects of Nafion$^{(R)}$ ionomer content in dual catalyst layer on the performances of PEMFC MEAs

  • 김근호;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.95.2-95.2
    • /
    • 2011
  • In order to achieve high performance and low cost for commercial applications, the development of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, must be optimized. Expensive platinum is currently used as an electrochemical catalyst due to its high activity. Although various platinum alloys and non-platinum catalysts are under development, their stabilities and catalytic activities, especially in terms of the oxygen reduction (ORR), render them currently unsuitable for practical use. Therefore, it is important to decrease platinum loading by optimizing the catalysts and electrode microstructure. In this study, we prepared several different MEAs (non-uniform Nafion$^{(R)}$ ionomer loading electrode) which have dual catalyst layers to find the optimal Nafion$^{(R)}$ ionomer distribution in the electrodes. We changed Nafion$^{(R)}$ ionomer content in the layers to find the ideal composition of the binder and Pt/C in the electrode. For MEAs with various ionomer contents in the anodes and cathodes, the electrochemical activity (activation overpotential) and the mass transport properties (concentration overpotential) were analyzed and correlated with the single cell performance. The dual catalyst layers MEA showed higher cell performance than uniformly fabricated MEA, especially at the high current density region.

  • PDF

직접 스크린 프린팅법으로 제조된 고분자 전해질 연료전지의 고성능 전극 (High Performance Electrode of Polymer Electrolyte Membrane Fuel Cells Prepared by Direct Screen Printing Process)

  • 임재욱;최대규;류호진
    • 마이크로전자및패키징학회지
    • /
    • 제11권1호
    • /
    • pp.65-69
    • /
    • 2004
  • 스크린 프린팅법은 고분자 전해질 연료전지의 전극 촉매층 제조의 편리함과 적용성의 면에서 가장 일반적인 방법 중에 하나이다. 본 논문은 기존의 방법과 비교하여 매우 낮은 백금 함침량을 가지기 때문에 경쟁적이고, 부가적인 공정 없이 swelling 문제를 간단하게 억제시켜 개선된 스크린 프린팅 법을 제안하였다. 특히, 가스켓 일체형 MEA는 고분자 전해질 연료전지의 작동 중에 가스 침투의 영향을 방지하여 고전류 영역에서 기존의 방법으로 제조된 MEA보다 높은 성능을 가지게 제작하였다. 이와 같은 방법들은 보다 간단하고 빠른 제조의 기회를 준다.

  • PDF

$TiO_2$ 촉매를 첨가한 자가 가습 연료전지용 MEA의 제조 (Preparation of MEA with $TiO_2$ catalysts for Self-humidifying PEMFC)

  • 변정연;이용진;주민철;김화용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.568-571
    • /
    • 2008
  • A novel self-humidifying composite membrane for the proton exchange membrane fuel cell (PEMFC) at low humidity condition was developed. The Pt/$TiO_2$ catalyst particles were synthesized via supercritical impregnation methods. Pt precursor was dissolved in supercritical carbon dioxide and impregnated onto $TiO_2$ particles. Pt precursors were platinum(II) acetylacetonate, Dimethyl(1,5-cyclooctadiene) platinum(II) and we controlled the ratio of Pt to $TiO_2$. The impregnated Pt precursor was converted to $TiO_2$ supported Pt nanoparticle under various reducing conditions. Pt/$TiO_2$ catalyst particles were dispersed uniformly into the Nafion solution, and then Pt/$TiO_2$/Nafion composite membrane was prepared using solution-cast method. The self-humidifying composite membrane could minimize membrane conductivity loss under dry conditions due to the presence of catalyst and hydrophilic Pt/$TiO_2$ particles. To optimize the performance of MEA, amount of ionomer loading was controlled. And mixed catalysts were used. The cell performance of MEA was obviously improved under dry conditions at $65^{\circ}C$.

  • PDF

경유 중 황이 산화촉매 장착 디젤엔진의 입자상 물질에 미치는 영향 (The Effect of Fuel Sulfer on Particulate Matter of Diesel Engine Equipped with Oxidation Catalyst)

  • 조강래;신영조;류정호;김희강
    • 한국대기환경학회지
    • /
    • 제13권6호
    • /
    • pp.487-495
    • /
    • 1997
  • The most desirable diesel oxidation catalyst (DOC) should have the properties of oxidizing CO, HC and SOF effectively at low exhaust gas temperature while minimizing the formation of sulfate at high exhaust gas temperature. Precious metals such as platinum and palladium have been known to be sufficiently active for oxidizing SOF and also to have high activity for the oxidation of sulfur dioxide $(SO_2)$ to sulfur trioxide $(SO_3)$. There is a need to develop a highly selective catalyst which can promote the oxidation SOF efficiently, on the other hand, suppress the oxidation of $SO_2$. In this study, a Pt-V catalyst was prepared by impregnating platinum and vanadium onto a Ti-Si wash coated ceramic monolith substrate. A prepared Pt-V catalytic converter was installed on a heavy duty diesel engine and the effect of fuel sulfur on particulate matter (PM) of heavy duty diesel engine was measured. The effect of fuel sulfur on PM of Pt-V was also compared with that of a commercialized Pt catalyst currently being used in some of the heavy duty diesel engines in advanced countries. Only 1 $\sim$ 3% of sulfur in the diesel fuel was converted to sulfate in PM for the engine without catalyst, but almost 100% of sulfur conversion was achieved for the engine with Pt catalyst at maximum loading condition. In the case of Pt-V catalyst, there was no big difference in conversion with the base engine even at maximum loading condition. The reason of SOF increase according to the increase of suflate emission was identified as the washing off effect of bound water in sulfate.

  • PDF

Low Temperature Catalytic Activity of Cobalt Oxide for the Emergency Escape Mask Cartridge

  • Park, Jae-Man;Kim, Deog-Ki;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.58-61
    • /
    • 2002
  • A preparation method of cobalt supported alumina catalyst for a emergency escape mask cartridge has been studied. Catalysts were prepared by incipient wetness impregnation method using pre-shaped $\gamma$=alumina powders of 70-100 mesh. The catalyst was tested in a continuous-flow reactor system and characterized by elemental analysis, BET and TGA-DTA techniques. Cobalt shows higher activity than platinum or nickel for carbon monoxide oxidation at room temperature. Optimum loading amount of cobalt was 10 wt.% for CO oxidation and the reaction activity increases gradually with the increase of calcination temperature up to $450^{\circ}C.

A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells

  • Cho, Min Kyung;Lim, Ahyoun;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Park, Hyun S.;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권3호
    • /
    • pp.183-196
    • /
    • 2017
  • The research efforts directed at advancing water electrolysis technology continue to intensify together with the increasing interest in hydrogen as an alternative source of energy to fossil fuels. Among the various water electrolysis systems reported to date, systems employing a solid polymer electrolyte membrane are known to display both improved safety and efficiency as a result of enhanced separation of products: hydrogen and oxygen. Conducting water electrolysis in an alkaline medium lowers the system cost by allowing non-platinum group metals to be used as catalysts for the complex multi-electron transfer reactions involved in water electrolysis, namely the hydrogen and oxygen evolution reactions (HER and OER, respectively). We briefly review the anion exchange membranes (AEMs) and electrocatalysts developed and applied thus far in alkaline AEM water electrolysis (AEMWE) devices. Testing the developed components in AEMWE cells is a key step in maximizing the device performance since cell performance depends strongly on the structure of the electrodes containing the HER and OER catalysts and the polymer membrane under specific cell operating conditions. In this review, we discuss the properties of reported AEMs that have been used to fabricate membrane-electrode assemblies for AEMWE cells, including membranes based on polysulfone, poly(2,6-dimethyl-p-phylene) oxide, polybenzimidazole, and inorganic composite materials. The activities and stabilities of tertiary metal oxides, metal carbon composites, and ultra-low Pt-loading electrodes toward OER and HER in AEMWE cells are also described.

Bio-jet fuel 제조용 합성원유 수첨이성화 촉매 (Catalysts for Hydroisomerization of Synthesis-Oil for Bio-jet fuel Production)

  • 윤소영;이은옥;박영권;전종기;정순용;한정식;정병훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.795-796
    • /
    • 2010
  • 바이오매스로부터 합성액체오일을 생산하기 위한 방법의 하나로써 Fischer-Tropsch 합성이 세계적으로 주목을 받고 있다. $C_7-C_{15}$ 파라핀의 수첨이성화 반응은 세탄넘버의 향상과 저점도, 유동점, 및 어는점 등의 저온유동특성의 개선을 위하여 디젤연료의 생산 공정에 적용된다. Fischer-Tropsch 합성으로부터 생산되는 Jet fuel 등의 상업적인 제품들은 낮은 끓는점과 유동점을 개선해야 한다. 본 연구는 합성 오일로부터 bio-jet fuel을 제조하기 위한 수첨이성화 반응용 촉매를 개발하는데 있다. 수첨이성화 반응용 백금/제올라이트 촉매의 특성을 분석하고 모델반응으로써 도데칸의 수첨이성화반응 성능을 회분식반응기에서 조사하였다.

  • PDF