• Title/Summary/Keyword: low order harmonic

Search Result 200, Processing Time 0.027 seconds

Topology of input current waveform improvement type single-phase rectifier (입력전류 파형 개선형 단상 정류기의 토폴로지)

  • 이상현;박진민;문상필;서기영
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.403-406
    • /
    • 2003
  • For small capacity rectifier circuits such as these for consumer electronics and appliances, capacitor input type rectifier circuits are generally used. Consequently, various harmonics generated within the power system become a serious problem. Various studies of this effect have been presented previously. However, most of these employ switching devices, such as FET and the like. The absence of switching devices mattes systems more tolerant to over-load and brings low radio noise benefits. We propose a power factor correction scheme using a LC resonant in commercial frequency without switching devices. In this method It makes a sinusoidal wave by widening conduction period using the current resonance in commercial frequency, Hence, the harmonic characteristics can be significantly improved, where the lower order harmonics, such as the fifth and seventh orders are much reduced The result are confirmed by the theoretical and experimental implementations.

  • PDF

Letters Current Quality Improvement for a Vienna Rectifier with High-Switching Frequency (높은 스위칭 주파수를 가지는 비엔나 정류기의 전류 품질 개선)

  • Yang, Songhee;Park, Jin-Hyuk;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.181-184
    • /
    • 2017
  • This study analyzes the turn-on and turn-off transients of a metal-oxide-semiconductor field-effect transistor (MOSFET) with high-switching frequency systems. In these systems, the voltage distortion becomes serious at the output terminal of a Vienna rectifier by the turn-off delay of the MOSFET. The current has low-order harmonics through this voltage distortion. This paper describes the transient of the turn-off that causes the voltage distortion. The algorithm for reducing the sixth harmonic using a proportional-resonance controller is proposed to improve the current distortion without complex calculation for compensation. The reduction of the current distortion by high-switching frequency is verified by experiment with the 2.5-kW prototype Vienna rectifier.

An Effective Control Scheme for Battery Charger System in Electric Vehicles

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.232-233
    • /
    • 2012
  • This paper presents an effective control scheme for an electric vehicle battery charger where a symmetrical bridgeless power factor-corrected converter and a buck converter are cascaded. Both converters have been popular in industries because of their high efficiency, low cost, and compact size, hence combining these converters makes the overall battery charging system strongly efficient. Moreover, this charger topology can operate at universal input voltage and attain a desired battery current and voltage without ripple. In order to achieve a unity input power factor and zero input current harmonic distortion, the proposed control scheme adopts duty ratio feed-forward control technique in both current and voltage control loop. Additionally, in the current loop, its reference is created by a phase-locked loop (PLL) block, leading to a pure sinusoidal input current although the input voltage waveform is being distorted. The feasibility and practical value of the proposed approach are verified by simulation and experiment with an 110V/60Hz ac line input and 1.5kW-72V dc output of the battery charging system.

  • PDF

Common-Mode Voltage and Current Harmonic Reduction for Five-Phase VSIs with Model Predictive Current Control

  • Vu, Huu-Cong;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1477-1485
    • /
    • 2019
  • This paper proposes an effective model predictive current control (MPCC) that involves using 10 virtual voltage vectors to reduce the current harmonics and common-mode voltage (CMV) for a two-level five-phase voltage source inverter (VSI). In the proposed scheme, 10 virtual voltage vectors are included to reduce the CMV and low-order current harmonics. These virtual voltage vectors are employed as the input control set for the MPCC. Among the 10 virtual voltage vectors, two are applied throughout the whole sampling period to reduce current ripples. The two selected virtual voltage vectors are based on location information of the reference voltage vector, and their duration times are calculated using a simple algorithm. This significantly reduces the computational burden. Simulation and experimental results are provided to verify the effectiveness of the proposed scheme.

A Synthesis and Design of the LPF with Novel Spurious Suppression Characteristics Using High Efficiency Inductor (고 효율 인덕터를 이용한 우수한 고조파 억압 특성을 갖는 저역 통과 필터 합성 및 설계)

  • Kim, Yu-Seon;An, Jae-Min;Pyo, Hyun-Seong;Lee, Hye-Sun;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.9
    • /
    • pp.46-51
    • /
    • 2009
  • This paper propose the new approach of the quantity effect by high efficiency inductor characteristic to the harmonic suppression of the lowpass filter. We applied the reliable de-embedding process in order to extract the precise elements values. Moreover, for the effective its application and comparison, the variable stepped impedance low pass filters with a same specification are designed. The proposed procedure is expected to handle the overall filter performance and to construct a synthesized equivalent circuit from its determined specification.

Design of Permanent Magnet Type Wind Power Generators for Cogging Torque Reduction with Optimum Pole Arc Pitch Ratio (코깅토크 저감을 위한 최적 극호비를 갖는 영구자석형 풍력발전기의 설계)

  • Jang, Seok-Myeong;Kim, Jin-Soon;Ko, Kyoung-Jin;Choi, Jang-Young;Yoon, Gi-Gab
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.38-40
    • /
    • 2009
  • In order to achieve a gearless construction of the wind energy conversion system(WECS), a low-speed generator should be used. Of the various candidate machine types, radial-field, multi-pole, permanent magnet, synchronous machines may be used for low-speed applications. So, this paper deals with the design of direct-coupled, multi-pole radial field machines with permanent magnet(PM) excitation for wind power applications for cogging torque reduction through the determination of optimum pole arc/pitch ratio. On the basis of an equivalent magnetic circuit method(EMCM) and a space harmonic method(SHM), an initial design is performed considering restricted conditions. And then, a detailed design is made using a non-linear finite element analyses(FEA). Finally, test results concerning generating characteristics are given to confirm the validation of the design.

  • PDF

Performance Improvement of Single-phase PLL Control using State Observer (상태관측기를 이용한 단상 PLL제어의 성능 개선)

  • Hwang, Hee-Hun;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.96-104
    • /
    • 2009
  • This paper proposes a single-phase Phase-locked loop (PLL) of the virtual two phase generator using full-order state observer, which is essential to find phase and frequency of the single-phase source. The conventional methods cannot remove the low-order harmonics included in source voltage, which influencesto whole PLL control system. The proposed algorithm separates fundamental wave from harmonics, and removes harmonics effectively. Therefore it generates only the fundamental wave. As it controls virtual voltage and input voltage together, it decreases steady-state error. From simulation and experimental results, the generated frequency by the proposed PLL which it plans, converges to the actual value, and the steady-state error is much reduced under given harmonic voltages. It is also confirmed that the proposed algorithm removed harmonics effectively and it generates only the fundamental wave.

Design of Next Generation Amplifiers Using Nanowire FETs

  • Hamedi-Hagh, Sotoudeh;Oh, Soo-Seok;Bindal, Ahmet;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.566-570
    • /
    • 2008
  • Vertical nanowire SGFETs(Surrounding Gate Field Effect Transistors) provide full gate control over the channel to eliminate short channel effects. This paper presents design and characterization of a differential pair amplifier using NMOS and PMOS SGFETs with a 10nm channel length and a 2nm channel radius. The amplifier dissipates $5{\mu}W$ power and provides 5THz bandwidth with a voltage gain of 16, a linear output voltage swing of 0.5V, and a distortion better than 3% from a 1.8V power supply and a 20aF capacitive load. The 2nd and 3rd order harmonic distortions of the amplifier are -40dBm and -52dBm, respectively, and the 3rd order intermodulation is -24dBm for a two-tone input signal with 10mV amplitude and 10GHz frequency spacing. All these parameters indicate that vertical nanowire surrounding gate transistors are promising candidates for the next generation high speed analog and VLSI technologies.

Effect of low frequency oscillations during milking on udder temperature and welfare of dairy cows

  • Antanas Sederevicius;Vaidas Oberauskas;Rasa Zelvyte;Judita Zymantiene;Kristina Musayeva;Juozas Zemaitis;Vytautas Jurenas;Algimantas Bubulis;Joris Vezys
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.244-257
    • /
    • 2023
  • The study aimed to investigate the effect of low-frequency oscillations on the cow udder, milk parameters, and animal welfare during the automated milking process. The study's objective was to investigate the impact of low-frequency oscillations on the udder and teats' blood circulation by creating a mathematical model of mammary glands, using milkers and vibrators to analyze the theoretical dynamics of oscillations. The mechanical vibration device developed and tested in the study was mounted on a DeLaval automatic milking machine, which excited the udder with low-frequency oscillations, allowing the analysis of input parameters (temperature, oscillation amplitude) and using feedback data, changing the device parameters such as vibration frequency and duration. The experimental study was performed using an artificial cow's udder model with and without milk and a DeLaval milking machine, exciting the model with low-frequency harmonic oscillations (frequency range 15-60 Hz, vibration amplitude 2-5 mm). The investigation in vitro applying low-frequency of the vibration system's first-order frequencies in lateral (X) direction showed the low-frequency values of 23.5-26.5 Hz (effective frequency of the simulation analysis was 25.0 Hz). The tested values of the first-order frequency of the vibration system in the vertical (Y) direction were 37.5-41.5 Hz (effective frequency of the simulation analysis was 41.0 Hz), with higher amplitude and lower vibration damping. During in vivo experiments, while milking, the vibrator was inducing mechanical milking-similar vibrations in the udder. The vibrations were spreading to the entire udder and caused physiotherapeutic effects such as activated physiological processes and increased udder base temperature by 0.57℃ (p < 0.001), thus increasing blood flow in the udder. Used low-frequency vibrations did not significantly affect milk yield, milk composition, milk quality indicators, and animal welfare. The investigation results showed that applying low-frequency vibration on a cow udder during automatic milking is a non-invasive, efficient method to stimulate blood circulation in the udder and improve teat and udder health without changing milk quality and production. Further studies will be carried out in the following research phase on clinical and subclinical mastitis cows.

An Antenna & RF System for Fly-away Satcom Terminal Application on Ka-band (Ka대역 위성통신용 fly-away 터미널 안테나 & RF 시스템 설계)

  • Park, Byungjun;Kim, Chunwon;Yoon, Wonsang;Lee, SeongJae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.485-491
    • /
    • 2014
  • An Antenna & RF system for a fly-away satcom terminal application on ka-band is presented in this paper. The Fly-away satellite terminal can be moved and operated by two person and adapt automatic satellite tracking system in order to decrease the tracking time. Additionally, for low-power consumption, compact size and light-weight, a dual reflector antenna is constructed using dual-offset gregorian antenna structure. For minimize weight, the reflector of the antenna is made of Magnesium. For low-power consumption and light-weight, the pHEMT MMIC compound devices is utilized. The Electronic Band-Gap(EBG) Low-Pass Filter(LPF) is designed for harmonic rejection. In the receiving part, Low-Noise Block converter(LNB) structure is designed for compact and lightweight. In this paper, fly-away satcom terminal with low-power consumption, compact size and light-weight is described with antenna system and RF system performances. Through the experimentation, fly-away terminal's EIRP is more than 50dBW, G/T is more than $17dB/^{\circ}K$.