• Title/Summary/Keyword: low magnetic field

Search Result 797, Processing Time 0.021 seconds

Analysis of Magnetic Field of Superconducting Winding According to the Changed Damper Thickness and Material (댐퍼의 두께와 재질 변화에 따른 초전도 선재에 미치는 자장특성 분석)

  • Jeong, Jae-Sik;Lee, Sang-Ho;Hong, Jung-Pyo;Jo, Young-Sik
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.5-8
    • /
    • 2012
  • Superconducting windings of synchronous machine have to be operated in below the critical temperature, critical current density and critical magnetic field. If one of these characteristics does not satisfied, then the quench occurred in superconducting winding. Especially the armature current dramatically increased as the superconducting generator is short-circuited at the rated load condition and magnetic field in field winding increased due to the armature current. Therefore, damper is required to reduce the magnetic field of field winding which increases reliability of the superconducting generator. Damper dimension can be decided by time constant[1-2]. In this paper the basic model is high-power and low-speed superconducting generator. Damper time constant was calculated from the changed damper thickness and material. Magnetic flux of field coil at the basic model and changed damper time constant model is analyzed.

Fundamental study on cancer therapy by blocking newborn blood vessels by magnetic force control

  • KIRIMURA, Makoto;AKIYAMA, Yoko;NISHIJIMA, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.11-15
    • /
    • 2018
  • In this study, a cancer treatment by accumulating and aggregating ferromagnetic particles in newborn blood vessels was examined. It is necessary for this treatment to control dispersion-aggregation property of ferromagnetic particles. Ferromagnetic particles required in this method disperse at low magnetic field, aggregate at high magnetic field and maintain the aggregation even after removal of the magnetic field. In order to control the dispersion-aggregation property, the surface of magnetite particles was modified with higher fatty acids having different lengths. As a result, we succeeded to prepare propionic acid-modified magnetite particles that form irreversible aggregation by magnetic field. The model experiments simulating newborn blood vessels showed that these particles can block the flow by the magnetic field, and the blockage was maintained after removal of the magnetic field.

Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays

  • Huang, Shaoying;Ren, Zhi Hua;Obruchkov, Sergei;Gong, JIa;Dykstra, Robin;Yu, Wenwei
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.179-201
    • /
    • 2019
  • Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on non-linear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.

Effect of a Magnetic Field on Electrical Conductivity of a Partially Ionized Plasma

  • Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.29-34
    • /
    • 1975
  • Solar electrical conductivity has been calculated, making use of Yun and Wyller's formulation. The computed results arc presented in a tabulated form as functions of temperature and pressure for given magnetic field strengths. The results of the calculation show that the magnetic field does not play any important role in characterizing the electrical conductivity of the ionized gas when the gas pressure is relatively high (e.g., $P{\geq}10^4\;dynes/cm^2$). However, when the gas pressure is low (e.g., $P{\leq}10\;dynes/cm^2$), the magnetic field becomes very effective even if its field strength is quite small (e.g., $B{\leq}0.01$ gauss). It is also found that, except for lower temperature region (e.g., $T{\leq}10^{4^{\circ}}K$), there is a certain linear relationship in a log- log graph between the pressure and the critical magnetic field strength, which is defined as a field strength capable of reducing the non-magnetic component of the electrical conductivity by 20%.

  • PDF

Relationship between Magnetic Torquer Arrangement and Reaction Wheel Momentum Dumping Performance (자기토커 배치와 반작용휠 모멘텀 덤핑 성능 관계)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.760-766
    • /
    • 2018
  • Due to external disturbances on the satellite, unwanted momentum is accumulated on reaction wheels. To remove this momentum, three magnetic torquers which are installed along the satellite's axes are used. The magnetic torquers generated torque indirectly by interactions with the earth's magnetic field. Thus, during momentum dumping, we should consider both the magnetic torquer and the earth's magnetic field generated on the magnetic torquers at the same time. When low earth orbit satellite with high inclination angle holds nadir pointing attitude, weak earth's magnetic field is generated along the satellite's pitch axis. In this case, one magnetic torquer is overloaded and momentum dumping performance is degraded. This research will review the method to improve the momentum dumping performance by adjusting magnetic torquers arrangement.

The characteristics of Magnetized plasma and its applications to Etching (자화된 플라즈마의 특성 및 식각에의 응용)

  • Shin, Kyoung-Sop;Lee, Ho-Jun;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.261-263
    • /
    • 1993
  • The effects of the magnetic field and gas pressure on the etching characteristics were investigated in the axial magnetic field enhanced RIE system. This system has many advantages compared with the conventional RIE system ; the capability of operating at low pressure, low self-bias voltage, high electron density and high etch rate in the low pressure, but also has disadvantages such as the nonconformity of plasma density which intensifies as the magnitude of magnetic field increases. To overcome this problem we made some grooved anode and tried to find the optimal pressure and B-field strength.

  • PDF

Magneto-impedance effect of CoFeSiBNi amorphous magnetic films (CoFeSiBNi 아몰퍼스 합금의 자기-임피던스 효과)

  • Lee, Seung-Hun;Park, Byung-Kyu;Hwang, Sung-Woo;Moon, Sung
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.389-393
    • /
    • 2007
  • Soft ferromagnetic materials are very useful for many sensors using magnetic materials demanding high permeability, low coercivity and low hysteresis loss. Among them, FeCoSiBNi amorphous magnetic films show a good impedance change (about 5.01 %/Oe, at 10 MHz) by the exterinal magnetic field in this experiment. The magnetic films are produced by melt-spun method, one of the rapid solidification process. Ribbon shape wires were made from the films, and let them annealed in DC magnetic field to increase the maximum Giant Magneto Impedance ratio. Field annealing decreases the stress and changes the effective anisotropy. Thus, we can find that the impedance change (200.47 %) is improved and the fabricated magnetic wire has characteristics of good sensor element.

Characteristics of Magnetic Field Generated by Operating Low Pressure Discharge Lamp (저압방전등의 사용중에 발생하는 자계특성)

  • 이복희;전덕규;길경석;백용현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.63-66
    • /
    • 1994
  • This paper describes the developed sensor for measuring the time-varying magnetic fields and presents the characteristics of the magnetic fields and presents the characteristics of the magnetic field generated by lighting a fluorescent lamp. The frequency bandwidth of magnetic field measurement system is kknown as 40 Hz∼100 kHz by means of calibration experiment. The magnetic field waveform which originates from the various lighting systems was measured and the frequency components were analyzed by fast Fourier transformation technique. The magnetic field generated during the operation of the fluorescent lamp mainly includes the odd harmonics, and in the case\ulcorner of push button switch and high frequency starter types the fast transient component is occurred in an instant of lighting.

  • PDF

Design of a Magnetic Field Source for In Vivo Experiments at Extremely Low Frequency (생체 실험용 극저주파 자기장 발생 장치의 설계)

  • 김정호;김윤명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.871-877
    • /
    • 2003
  • In this paper, the design parameters for the magnetic field source at extremely low frequency are proposed. This facility can be used fur in vivo experiments with small animals to investigate biological response to the driving magnetic fields. In case that the exposed animals are motionless, the animals may be affected by the directivity of driving field. To avoid this effect, a 2-axis ELF magnetic field driving apparatus was designed. The optimum location and number of turns of each coil were obtained by numerical analysis. Applying these data to the MATLAB code(for computation), the magnetic field distribution was obtained. The calculation result fur a well-designed facility showed that the space in which the amplitude of the magnetic field lies within the 95 % of the magnetic field distribution was more than 60 % of each axis length.

A Study on the Exposure Assessment of Extremely Low Frequency Magnetic Fields (극저주파 자계의 노출 평가에 대한 연구)

  • Kim, Eung-Sik;Kim, Myeong-Hun;Min, Suk-Won
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • This paper addresses the assessment methods used to evaluate the magnetic exposure of a human to ELF EMF (Extremely Low Frequency Electromagnetic Field) which is caused by the process of power delivery from 60 Hz commercial power. These days the main concern is primarily focused on the magnetic field. For the exposure assessment, both numerical studies and laboratory experiments were studied and the results of the two compared for methodological suitability. The numerical analyses employ the Impedance Method (IM), Boundary Element Method (BEM), and Finite Element Method (FEM) and the laboratory experiments used various human phantom models made with conductivities congruent to human organs and then exposed to uniform/non-uniform magnetic fields to produce eddy currents. Under these conditions a number of examples have been evaluated and the reliability assessed to present the pros and cons of each methodology.