• Title/Summary/Keyword: low gate count

Search Result 41, Processing Time 0.034 seconds

Design of Low-Complexity MIMO-OFDM Symbol Detector for High Speed WLAN Systems (고속 무선 LAN 시스템을 위한 저복잡도 MIMO-OFDM 심볼 검출기 설계)

  • Im, Jun-Ha;Kim, Jae-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.447-448
    • /
    • 2008
  • This paper presents a low-complexity design and implementation results of a multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) symbol detector for high speed wireless LAN (WLAN) systems. The proposed spatial division multiplexing (SDM) symbol detector is designed by HDL and synthesized to gate-level circuits using 0.18um CMOS library. The total gate count for the symbol detector is 238K.

  • PDF

A Low Power Design of H.264 Codec Based on Hardware and Software Co-design

  • Park, Seong-Mo;Lee, Suk-Ho;Shin, Kyoung-Seon;Lee, Jae-Jin;Chung, Moo-Kyoung;Lee, Jun-Young;Eum, Nak-Woong
    • Information and Communications Magazine
    • /
    • v.25 no.12
    • /
    • pp.10-18
    • /
    • 2008
  • In this paper, we present a low-power design of H.264 codec based on dedicated hardware and software solution on EMP(ETRI Multi-core platform). The dedicated hardware scheme has reducing computation using motion estimation skip and reducing memory access for motion estimation. The design reduces data transfer load to 66% compared to conventional method. The gate count of H.264 encoder and the performance is about 455k and 43Mhz@30fps with D1(720x480) for H.264 encoder. The software solution is with ASIP(Application Specific Instruction Processor) that it is SIMD(Single Instruction Multiple Data), Dual Issue VLIW(Very Long Instruction Word) core, specified register file for SIMD, internal memory and data memory access for memory controller, 6 step pipeline, and 32 bits bus width. Performance and gate count is 400MHz@30fps with CIF(Common Intermediated format) and about 100k per core for H.264 decoder.

A Design of Low-power/Small-area Divider and Square-Root Circuits based on Logarithm Number System (로그수체계 기반의 저전력/저면적 제산기 및 제곱근기 회로 설계)

  • Kim, Chay-Hyeun;Kim, Jong-Hwan;Lee, Yong-Hwan;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.895-898
    • /
    • 2005
  • This paper describes a design of LNS-based divider and square-root circuits which are key arithmetic units in graphic processor and digital signal processor. To achive area-efficient and low-power that is an essential consideration for mobile environment, a fixed-point format of 16.16 is adopted instead of conventional floating-point format. The designed divider and square-root units consist of binary-to-logarithm converter, subtractor, logarithm-to-binary converter. The binary to logarithm converter is designed using combinational logic based on six regions approximation method. As a result, gate count reduction is obtained when compared with conventional lookup approack. The designed units is 3,130 gate count and 1,280 gate count. To minimize average percent error 3.8% and 4.2%. error compensation method is employed.

  • PDF

A Level Dependent Source Concoction Multilevel Inverter Topology with a Reduced Number of Power Switches

  • Edwin Jose, S.;Titus, S.
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1316-1323
    • /
    • 2016
  • Multilevel inverters (MLIs) have been preferred over conventional two-level inverters due to their inherent properties such as reduced harmonic distortion, lower electromagnetic interference, minimal common mode voltage, ability to synthesize medium/high voltage from low voltage sources, etc. On the other hand, they suffer from an increased number of switching devices, complex gate pulse generation, etc. This paper develops an ingenious symmetrical MLI topology, which consumes lesser component count. The proposed level dependent sources concoction multilevel inverter (LDSCMLI) is basically a multilevel dc link MLI (MLDCMLI), which first synthesizes a stepped dc link voltage using a sources concoction module and then realizes the ac waveform through a conventional H-bridge. Seven level and eleven level versions of the proposed topology are simulated in MATLAB r2010b and prototypes are constructed to validate the performance. The proposed topology requires lesser components compared to recent component reduced MLI topologies and the classical topologies. In addition, it requires fewer carrier signals and gate driver circuits.

Low-Gate-Count 32-Bit 2/3-Stage Pipelined Processor Design (소면적 32-bit 2/3단 파이프라인 프로세서 설계)

  • Lee, Kwang-Min;Park, Sungkyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • With the enhancement of built-in communication capabilities in various meters and wearable devices, which implies Internet of things (IoT), the demand of small-area embedded processors has increased. In this paper, we introduce a small-area 32-bit pipelined processor, Juno, which is available in the field of IoT. Juno is an EISC (Extendable Instruction Set Computer) machine and has a 2/3-stage pipeline structure to reduce the data dependency of the pipeline. It has a simple pipeline controller which only controls the program counter (PC) and two pipeline registers. It offers $32{\times}32=64$ multiplication, 64/32=32 division, $32{\times}32+64=64$ MAC (multiply and accumulate) operations together with 32*32=64 Galois field multiplication operation for encryption processing in wireless communications. It provides selective inclusion of these algebraic logic blocks if necessary in order to reduce the area of the overall processor. In this case, the gate count of our integer core amounts to 12k~22k and has a performance of 0.57 DMIPS/MHz and 1.024 Coremark/MHz.

Low-power Frequency Offset Synchronization for IEEE 802.11a Using CORDIC Algorithm (CORDIC을 이용한 IEEE 802.11a용 저전력 주파수 옵셋 동기화기)

  • Jang, Young-Beom;Han, Jae-Woong;Hong, Dae-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.66-72
    • /
    • 2009
  • In this paper, an efficient frequency offset synchronization structure for OFDM(Orthogonal Frequency Division Multiplexing) is proposed. Conventional CORDIC(Coordinate Rotation Digital Computer) algorithm for frequency offset synchronization utilizes two CORDIC hardware i.e., one is vector mode for phase estimation, the other is rotation mode for compensation. But proposed structure utilizes one CORDIC hardware and divider. Through simulation, it is shown that hardware implementation complexity is reduced compared with conventional structures. The Verilog-HDL coding and front-end chip implementation results for the proposed structure show 22.1% gate count reduction comparison with those of the conventional structure.

A Low-complexity Mixed QR Decomposition Architecture for MIMO Detector (MIMO 검출기에 적용 가능한 저 복잡도 복합 QR 분해 구조)

  • Shin, Dongyeob;Kim, Chulwoo;Park, Jongsun
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.165-171
    • /
    • 2014
  • This paper presents a low complexity QR decomposition (QRD) architecture for MIMO detector. In the proposed approach, various CORDIC-based QRD algorithms are efficiently combined together to reduce the computational complexity of the QRD hardware. Based on the computational complexity analysis on various QRD algorithms, a low complexity approach is selected at each stage of QRD process. The proposed QRD architecture can be applied to any arbitrary dimension of channel matrix, and the complexity reduction grows with the increasing matrix dimension. Our QR decomposition hardware was implemented using Samsung $0.13{\mu}m$ technology. The numerical results show that the proposed architecture achieves 47% increase in the QAR (QRD Rate/Gate count) with 28.1% power savings over the conventional Householder CORDIC-based architecture for the $4{\times}4$ matrix decomposition.

A Design of Low-power/Small-area Arithmetic Units for Mobile 3D Graphic Accelerator (휴대형 3D 그래픽 가속기를 위한 저전력/저면적 산술 연산기 회로 설계)

  • Kim Chay-Hyeun;Shin Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.857-864
    • /
    • 2006
  • This paper describes a design of low-power/small-area arithmetic circuits which are vector processing unit powering nit, divider unit and square-root unit for mobile 3D graphic accelerator. To achieve area-efficient and low-power implementation that is an essential consideration for mobile environment, the fixed-point f[mat of 16.16 is adopted instead of conventional floating-point format. The vector processing unit is designed using redundant binary(RB) arithmetic. As a result, it can operate 30% faster and obtained gate count reduction of 10%, compared to the conventional methods which consist of four multipliers and three adders. The powering nit, divider unit and square-root nit are based on logarithm number system. The binary-to-logarithm converter is designed using combinational logic based on six-region approximation method. So, the powering mit, divider unit and square-root unit reduce gate count when compared with lookup table implementation.

Development of a Floating Point Co-Processor for ARM Processor (ARM 프로세서용 부동 소수점 보조 프로세서 개발)

  • 김태민;신명철;박인철
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.232-235
    • /
    • 1999
  • In this paper, we present a coprocessor that can operate with ARM microprocessors. The coprocessor supports IEEE 754 standard single- and double-precision binary floating point arithmetic operations. The design objective is to achieve minimum-area, low-power and acceleration of processing power of ARM microprocessors. The instruction set is compatible with ARM7500FE. The coprocessor is written in verilog HDL and synthesized by the SYNOPSYS Design Compiler. The gate count is 38,115 and critical path delay is 9.52ns.

  • PDF

A Low-area and Low-power 512-point Pipelined FFT Design Using Radix-24-23 for OFDM Applications

  • Yu, Jian;Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.475-480
    • /
    • 2018
  • In OFDM-based systems, FFT is a critical component since it occupies large area and consumes more power. In this paper, we present a low hardware-cost and low power 512-point pipelined FFT design method for OFDM applications. To reduce the number of twiddle factors and to choose simple design architecture, the radix-$2^4-2^3$ algorithm are exploited. For twiddle factor multiplication, we propose a new canonical signed digit (CSD) complex multiplier design method to minimize the hardware-cost. In hardware implementation with Intel FPGA, the proposed FFT design achieves more than about 28% reduction in gate count and 18% reduction in power consumption compared to the previous approaches.