• Title/Summary/Keyword: low frequency transformer

Search Result 241, Processing Time 0.028 seconds

The Study of the Harmonic Currents Effects on the Transformer Vibration (고조파 전류가 변압기 진동에 미치는 영향에 관한 연구)

  • Kim, Su-Yeol;Kim, Yeon-Whan;Kim, Jang-Mok;Lim, Ik-Hun;Lee, Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.106-111
    • /
    • 2000
  • EP(Electrostatic Precipitator) has been used to keep the natural environment from fly-ash in the industrial fields and operated in intermittent PEC(Pulse Energized Control) mode to improve dust-collecting efficiency. Intermittent PEC mode induces low-frequency harmonic currents into power system, therefore EP transformer vibrates. This continuous transformer vibration developes transformer abnormal audio-noise and if it is too much or operates in the region of natural frequency, transformer will be damaged in the end. EP interruption caused by transformer damage results in power generation stopped, power quality down and economic loss. Therefore, this paper explains harmonic currents and transformer vibration-core vibration, winding vibration, and proposes the measures of suppressing the vibration with EP operated in intermittent PEC mode. And this results is proposed to be used for future EP transformer design or EP control method to operate EP-concerned equipment safely keeping from system faults caused by transformer vibration.

  • PDF

A Study on the Analysis of Internal Power Loss Including Leakage Inductance of Power Transformer for DAB Converter (DAB 컨버터용 전력 변압기의 누설 인덕턴스를 포함한 내부 전력 손실 분석에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young;Gil, Yong Man
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.95-100
    • /
    • 2022
  • In this paper, a power loss analysis technique of a high-frequency transformer of a bidirectional DAB (Dual Active Bridge) converter is reported. To miniaturize the transformer of the dual active bridge converter, a resonant inductor was designed with an air gap included low-coupled rate state core to combine leakage inductor with the resonant inductor which is required for soft-switching. In this paper, leakage inductance and magnetizing inductance, core material, type of winding and winding method are included in the dual active bridge transformer loss analysis process to enable optimal design at the initial design stage. Transformer loss analysis for dual active bridge with a switching frequency of 200 kHz and maximum output of 5 kW was executed, and elements necessary for design based on the number of turns on the primary side were graphed while maintaining the transformer turns ratio and window area. In particular, it was possible to determine the optimal number of turns and thickness of the transformer, and ultimately, the total loss of the transformer could be estimated.

Low Voltage Impulse Test for Power Electric Instrunment Precaution Diagonsis Techniques (전력기기 예방진단 기술을 위한 저전압 충격시험)

  • Kwak, Hee-Ro;Kim, Jae-Chul;Kwan, Tae-Won;Yoon, Young-Beum;Son, Jin-Geun;Yun, Ji-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.281-285
    • /
    • 1991
  • In this paper, response characteristics by applying impulse into transformer windings in order to precaution diagonosis of power electric instrument are studied. A sample oilless transformer, an aging transformer and a good transformer are slected for models. The experimented results show that for testing the windings distortion and impedanced change of transformer the LVI method are suitable. Also, variation characteristic of output waveforms at time and frequency domain in order to efficient analysis is discussed. The results response that waveforms at frequency domain is very higher resolution at time domain.

  • PDF

Design and Analysis of the 300 W Planar Transformer (300 W급 평면 변압기의 설계 및 분석)

  • ;;;;;Ustinov Evgeniy
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.502-507
    • /
    • 2004
  • The forward planar transformer, which had power capacity of 300 W, input voltage of 220 V, output voltage of 15 V, and switching frequency of 300 KHz, was designed and manufactured by using the planar core with large effective area and the flat copper leadframes for miniaturization and high efficiency of the switching mode power supply (SMPS). As well as, a forward converter equipped with the above mentioned planar transformer was manufactured and electromagnetic characteristics were investigated. The numerical value of turns for 1st and 2nd winding were 15 and 2 respectively The self inductance of 1st winding was 1.592 mH, very low leakage inductance of 2.7 $\mu$H, and the coupling factor of 0.928 were obtained at switching frequency of 300 KHz. The high efficiency of 88.62 % for the SMPS equipped with planar transformer was obtained at power capacity of 300 W.

Utililty-Interfaced High-Frequency Flyback Transformer Linked Sinewave Pulse Modulated Inverter for a Small Scale Renewable Energy Conditioner

  • Chandhaket, Srawouth;Koninish, Yoshihiro;Nakaoka, Mutsou
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.112-123
    • /
    • 2002
  • This paper presents a novel prototype of the utility AC power interfaced soft-switching sinewave pulse modulated inverter using the high-frequency flyback for the small scale distributed renewable energy power conditioner. The proposed cricuit with a high-frequency isolation link has a funtion of electrical isolation, which is more cost-effective and reliable for the small-scale distributed renwal energy utilization system from a safety point of riew. The discontinuous conduction mode(DCM) operation of the high-frequency flyback transformer is adopted to establish a simple and low-cost circuit configuration and control scheme. For the simplicity, the circuit operating principle is described on the basis of the modified conventional full bridge inverter, whitch is the typical conventional high-frequency full-bridge inverter employing the high requency flyback transformer to eanble the effictive function of the electrical isolation. Than, the new circuit topology of the unility-interfaced soft-switching sinewave pulse modulated inverter using IGBTs is proposed. The proposed cricuit topology is additionally composed of the auxiliary power regenerating snubber cricuits, which are also mathematically analyzed for the parameter desigen settings. Finally, the performance of the propose inverter is evaluated on the basis of computer-aid simulation. It is noted that the sinewave pulse modulated output current of the inverter is synchronous to the AC main voltage.

An Improved High Efficiency Resonant Converter for the Contactless Power Supply with a Low Coupling Transformer (낮은 커플링 변압기를 갖는 비접촉 전원의 개선된 고효율 공진 컨버터)

  • Kong Young-Su;Kim Eun-Soo;Lee Hyun-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.33-39
    • /
    • 2005
  • Comparing with the conventional transformer without the air gap, a contactless transformer with the large air gap between the long primary winding and the secondary winding has increased leakage inductance and reduced magnetizing inductance. For transferring the primary power to the secondary one, the high frequency series resonant converter has been widely used for the contactless power supply system with the large air gap and the increased leakage inductance of the contactless transformer However, the high frequency series resonant converter has the disadvantages of the low efficiency and high voltage gain characteristics in the overall load range due to the large air gap and the circulating magnetizing current. In this paper, the characteristics of the high efficiency and unit voltage gain are revealed in the proposed three-level series-parallel resonant converter. The results are verified on the simulation based on the theoretical analysis and the 5kW experimental prototype.

Manufacture and Characteristics of the Planar Transformer using low power loss magnetic materials (저손실 자심재료를 이용한 평면변압기 제조 및 동작특성)

  • Lee, Hae-Yon;Heo, Jeong-Seob;Kim, Hyun-Sik;Park, Hye-Young;Ustinov, Evgeniy
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.19-22
    • /
    • 2004
  • The resonant planar transformer, which had power capacity of 300 W, input voltage of 220 V, output voltage of 15 V, and switching frequency of 500 kHz, was designed and manufactured by using the planar core with large effective area and the flat copper lead frames for miniaturization and high efficiency of the switching mode power supply (SMPS). As well as, a resonant converter equipped with the above mentioned planar transformer was manufactured and electromagnetic characteristics were investigated. The numerical value of turns for 1st and 2nd winding were 12 and 2 respectively. The self inductance of 1st winding was 33.2 ${\mu}H$, very low leakage inductance of 1.27 ${\mu}H$, and the coupling factor of 0.98 were obtained at switching frequency of 300 kHz. The high efficiency of 88.21 % for the SMPS equipped with planar transformer was obtained at power capacity of 300 W.

  • PDF

A Novel type of High-Frequency Transformer Linked Soft-Switching PWM DC-DC Power Converter for Large Current Applications

  • Morimoto Keiki;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.216-225
    • /
    • 2006
  • This paper presents a new circuit topology of DC busline switch and snubbing capacitor-assisted full-bridge soft-switching PWM inverter type DC-DC power converter with a high frequency link for low voltage large current applications as DC feeding systems, telecommunication power plants, automotive DC bus converters, plasma generator, electro plating plants, fuel cell interfaced power conditioner and arc welding power supplies. The proposed power converter circuit is based upon a voltage source-fed H type full-bridge high frequency PWM inverter with a high frequency transformer link. The conventional type high frequency inverter circuit is modified by adding a single power semiconductor switching device in series with DC rail and snubbing lossless capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge inverter arms and DC busline can achieve ZVS/ZVT turn-off and ZCS turn-on commutation operation. Therefore, the total switching losses at turn-off and turn-on switching transitions of these power semiconductor devices can be reduced even in the high switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules is selected to be 60 kHz. It is proved experimentally by the power loss analysis that the more the switching frequency increases, the more the proposed DC-DC converter can achieve high performance, lighter in weight, lower power losses and miniaturization in size as compared to the conventional hard switching one. The principle of operation, operation modes, practical and inherent effectiveness of this novel DC-DC power converter topology is proved for a low voltage and large current DC-DC power supplies of arc welder applications in industry.

Characteristics of Non-Isolated OSAKA Converter -Characteristics of Three-Phase Soft-Switching Power Factor Corrected Converter for Large Scale Power Without Three-Phase Transformer-

  • Taniguchi, Katsunori;Shimomori, Wataru;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1383-1386
    • /
    • 2005
  • Non-isolated OSAKA Converter, which removes a three-phase transformer, is described in this paper. The converter switches once in every half cycle of an AC commercial power source. Therefore, it can solve many problems caused by the high frequency operation. The proposed converter achieves the soft-switching operation and the EMI noise can be reduced. In this circuit, the resonant capacitor, which is used for the soft-switching operation, is utilized for the improvement of an input current waveform. To achieve low cost and compact structure, non-isolated OSAKA converter removes a three-phase transformer of the OSAKA converter. By removing the three-phase transformer, three phase currents occur the interferences each other. To avoid the interference, a new switching method for non-isolated OSAKA converter is preposed. The converter can be constructed by the low-speed large power devices. The converter generates the low distorted input current waveforms with high power factor.

  • PDF

The Electrical Properties of Thickness Vibration Mode Multilayer Piezoelectric Transformer using (PbCaSr)(TiMnSb)$O_3$ Ceramics ((PbCaSr)(TiMnSb)$O_3$ 세라믹스를 이용한 두께진동모드 적층 압전 변압기의 전기적 특성)

  • Yoo, Kyung-Jin;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.196-197
    • /
    • 2006
  • In this study, low temperature sintering multilayer piezoelectric transformer for DC-DC converter were manufactured using (PbCaSr)Ti(MnSb)$O_3$ ceramics and thin their electrical properties were investigated according to the vanation of frequency and load resistance. The voltage step-up ratio of multilayer piezoelectric transformer showed the maximum value m the vicinity of 1.3MHz and increased according to the increase of load resistance. When the output impedance coincided with the load resistance, the piezoelectric transformer showed the temperature rise of about $21^{\circ}C$ under the output power of 6W.

  • PDF