• 제목/요약/키워드: low foaming

검색결과 109건 처리시간 0.028초

용제형 저기포성 정련제의 제조 및 정련효과 (Preparation of Solvent-Type Low Foaming Scouring Agents and Their Scouring Effect)

  • 유혁제;정동진;;함현식;박홍수
    • 한국응용과학기술학회지
    • /
    • 제21권2호
    • /
    • pp.156-163
    • /
    • 2004
  • Low foaming scouring agents (LSSA) were prepared by blending of amine salt of dodecylbenzene sulfone, poly (PO-b-EO) glycol, Newpol PP-2000, MJU-100, ethylene glycol and organic solvent. As the results of several tests, LSSA-2 showed good scouring effect, penetrating ability and emulsifiability, and showed not much water pollution. The foaming power of LSSA-2 measured by Ross & Miles method was 11mm foam height immediately after foaming. And the foaming power of LSSA-2 measured by Ross & Clark method were less than 310mm foam height at $30^{\circ}C$, 17mm at $80^{\circ}C$. As a result, LSSA-2 was proved as a good foaming scouring agent.

무용제형 저기포성 정련제의 제조 및 정련특성 (Preparation of Solvent-Free Low Foaming Scouring Agents and Their Scouring Characteristics)

  • 박홍수;안성환;심일우;조혜진;함현식;김영찬;김성길
    • 한국응용과학기술학회지
    • /
    • 제23권1호
    • /
    • pp.37-44
    • /
    • 2006
  • Solvent-free low foaming scouring agents (LFSC) were prepared by blending of 2-ethylhexylaminoethyl sulfate (2-EHAS), POE(10) octadecylbenzyl- ammonium chloride (POBAC) and Sedlan FF-200 (FF-200). As the results of several tests, 2-EHAS/POBAC/FF-200/water (8g/12g/20g/60g) mixture (LFSC-5) showed good cleaning power, penetrating ability and stability to alkali, and gave less problem in water pollution. The foaming power of LFSC-5 measured by Ross and Miles method was 8mm foam height immediately after foaming, and that measured by Ross and Clark method was less than 300mm foam height at $30^{\circ}C$, and 18mm at $80^{\circ}C$. As a result, LFSC-5 proved a good low foaming scouring agent for fiber.

용제형 저기포성 정련제의 제조에 관한 연구 (A Study on the Preparation of Solvent Type Low Foaming Scouring Agents)

  • 박은경;박홍수;김영근
    • 공업화학
    • /
    • 제4권2호
    • /
    • pp.358-364
    • /
    • 1993
  • 2-Ethylhexylaminoethyl sulfate, Na-dioctyl sulfosuccinate, Newpol PP-2000, MJU-100, 에틸렌글리콜 및 유기용제 등을 블렌딩하여 저기포성 정련제(SLFS)를 제조하였다. SLFS로서 여러가지 물성시험을 해 본 결과, SLFS-2는 정련효과, 침투력, 유화력, 내알칼리성 등이 양호하였으며, 수질오염에 대한 영향이 크지 않았다. 또한 SLFS-2는 Ross & Miles법에 의한 거품생성 직후의 기포력이 포고 8mm로 나타났고, Ross & Clark법에 의한 기포력이 $30^{\circ}C$에서는 포고 300mm 이하로, $80^{\circ}C$에서는 15mm를 각각 나타내어 양호한 저기포성 정련제임이 입증되었다.

  • PDF

Characteristics of Complex Foaming Composites' Normal Pressure Foaming of Using Rubber and Bio-Degradable Materials

  • Dong Hun Han;Young Min Kim;Dan Bi Lee;Kyu Hwan Lee;Han-Seong Kim
    • 한국재료학회지
    • /
    • 제33권8호
    • /
    • pp.323-329
    • /
    • 2023
  • There are many types of foam molding methods. The most commonly used methods are the pressure foaming method, in which foam resin is mixed with a foaming agent at high temperature and high pressure, and the normal pressure foaming method, which foams at high temperature without pressure. The polymer resins used for foaming have different viscosities. For foaming under normal pressure, they need to be designed and analyzed for optimal foaming conditions, to obtain resins with low melt-viscosity or a narrow optimal viscosity range. This study investigated how changes in viscosity, molding temperature, and cross-link foaming conditions affected the characteristics of the molded foam, prepared by blending rubber polymer with biodegradable resin. The morphologies of cross sections and the cell structures of the normal pressure foam were investigated by SEM analysis. Properties were also studied according to cross-link/foaming conditions and torque. Also, the correlation between foaming characteristics was studied by analyzing tensile strength and elongation, which are mechanical properties of foaming composites.

초미세 발포 사출 시 핵 생성장치를 이용한 셀 크기의 변화 (Cell morphology of microcellular foaming injection molding products with pressure drop rate)

  • 김학빈;차성운
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.491-495
    • /
    • 2004
  • The industries use polymer materials for many purposes for they have many merits. The costs of these materials take up too great a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2$, $N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. This characteristic of microcellular foaming process has influenced by cell morphology. The cell morphology means cell size and cell density. The cell morphology has influenced by many factors. The examples of factor are pressure drop rate, foaming temperature, foaming time, saturation pressure, saturation time etc. Among their factors, pressure drop rate is the most important factor for cell morphology in microcellular foaming injection molding process. This paper describes about the cell morphology change in accordance with the pressure drop rate of microcellular foaming injection molding process.

  • PDF

발포 배율의 향상을 위한 금형 시스템의 공리적 설계 (Axiomatic Design of Mold System for Advance of Foaming Magnitude)

  • 황윤동;차성운
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.637-644
    • /
    • 2001
  • Polymer materials have a lot of merits including the low cost and the easiness of forming. For these reasons they are widely using at many manufacturing industries. Microcellular foaming process appeared at MIT in 1980s to save a quantity of material and increase mechanical properties. There are many process variables in appling microcellular foaming process to the conventional injection molding process. They can be solved by using Axiomatic Design Method which is very useful design method for designing a new product. Its main character is scientific and analytical. The information about the thickness of cavity plays an important role in making an effective foam. The goal of this research is to design mold system for advance of foaming magnitude with axiomatic design method. There is a relation between the change of cavitys thickness and foaming magnitude made after inserting a gas. R/t is a conception that indicate proportion between radius and thickness of cavity in mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of polymer in microcellular foaming process is decreasing gradually as the value of R/t is increasing. In this paper, an advanced mold system was presented by mapping the relation between functional requirements and design parameters.

초미세 발포 공법 시 가스 혼합에 따른 셀 형상 연구 (The Study for Cell Morphology with Gas Cocktail in Microcellular Foaming Process)

  • 차성운;윤재동;이윤성;김학빈
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.168-174
    • /
    • 2005
  • Nowadays, the companies use polymer materials for many purposes fur they have many advantages. The costs of these materials take up too high a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2,\;N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. In previous research, many facts of microcellular foaming process are founded its characteristics. But previous researcher found the characteristics of microcellular foaming process with pure gas, for example $CO_2,\;N_2$ and so on, they did not found the characteristics of microcellular foaming process with one more gases. If one more gases inlet the resin, the characteristics of microcellular foaming process is changed very amazingly. In this paper, discuss on the characteristics of microcellular foaming process wi th gas cocktail about cell morphology.

금형 시스템의 살두께에 대한 발포 배율의 변화 (A Change of Foaming Magnitude as Thickness of Mold System)

  • 황윤동;차성운;윤재동;김지현
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.186-191
    • /
    • 2000
  • We use so many plastic products in everyday. Because polymer materials have a lot of merits including low cost and easiness of forming, they are widely using at many manufacturing industries. Microcellular foaming process appeared at MIT in 1980's to save a quantity of material and increase mechanical properties. The information about the thickness of cavity plays an important role in appling microcellular foaming process to the conventional injection molding process. It is essential to make an effective foam. The goal of this research is to measure the relation between the change of cavity's thickness and foaming magnitude made after inserting a gas. R/t is a conception that indicate proportion between radius and thickness of cavity in mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of cavity is mold system. By means of SEM observation of side surface of cavity sample, foaming magnitude of polymer in microcellular foaming process is decreasing gradually as the value of R/t is increasing. The proposed foaming magnitude changes data of polymer in relation to mold system can be applied in more extensive injection molding process, such as optimum design of mold for microcellular foaming process.

  • PDF

발포공정을 이용한 경량의 연질 세라믹 보온단열재의 제조 (Preparation of Flexible and Light Thermal Insulating Ceramic Composites Using Foaming Technology)

  • 이철태
    • 공업화학
    • /
    • 제26권1호
    • /
    • pp.59-66
    • /
    • 2015
  • 본 연구는 유기계 보온단열재의 장점인 경량성과 연질특성을 갖는 무기계 보온단열재의 제조를 위한 새로운 개념의 무기질 저온 발포 공정에 관한 것이다. 새로운 무기질 발포 공정은 섬유상인 해포석 및 규산알루미늄으로 하여금 발포체의 골격을 형성토록 하고, 저온에서 기체 발생이 가능한 발포제를 사용하여 무기질 섬유상 골격체가 팽창되어 공동을 형성하게 하며, 이 형성된 공동 속에 낮은 열전도도를 갖는 무기질 다포체인 팽창진주암을 채우는 것이다. 총괄적으로 무기질 재료를 고온 용융함이 없이 저온에서 무기질 발포체의 제조가 가능하게 된다. 이를 위해서 섬유상인 해포석의 해섬처리과정, 발포를 위한 섬유상 슬러리의 열처리공정 등 다양한 준비공정이 필요하며, 열처리 전 슬러리의 최적 조성물 조건이 요구된다. 제조된 발포체는 경량, 연질의 보온단열재로서의 겉보기 밀도, 내력 강도, 굽힘강도, 고내열성 등의 물성을 보여주었다.

합성 기포제 희석 농도에 따른 기포콘크리트의 특성 (Properties of Foamed Concrete According to Concentrations of Synthetic Type Foaming Agents)

  • 최지호;신상철;박효진;김지호;정지용;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.123-125
    • /
    • 2011
  • Pre-foaming that has been used in this study is using to control and guarantee quality, but the optimum mix proportion and regulation are not definite. Therefore, this study investigated properties of foamed concrete according to concentrations of foaming agent to improve usability of foamed concrete. Synthetic foaming agent such as AES(Alkyl Ether Sulfate) and AOS(Alpha Olefin Sulfonate) are used to make foam with 1, 3, and 5% concentrations. We found that the flow of foam concrete increases when foam concentration is high and AES is more flowable than AOS. Density and compressive strength increase when foam concentration is low.

  • PDF