• Title/Summary/Keyword: low earth orbit (LEO)

Search Result 163, Processing Time 0.016 seconds

Thermal and Mechanical Properties of OG POSS Filled DGEBA/DDM (OG POSS의 첨가가 DGEBA/DDM의 열적, 기계적 물성에 미치는 영향)

  • Choi, Chunghyeon;Kim, YunHo;Kumar, Sarath Kumar Sathish;Kim, Chun-Gon
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.379-383
    • /
    • 2017
  • A study on the low Earth orbit (LEO) space environment have been conducted as a use of composites have increased. Among the LEO environmental factors, atomic oxygen is one of the most critical factors because atomic oxygen can react and erode a surface of polymer-based composite materials. POSS (Polyhedral Oligomeric Silsesquioxane) materials have been widely studied as an atomic oxygen-resistant nanomaterial. In this study, nanocomposites, which are composed of OG (Octaglycidyldimethylsilyl) POSS nanomaterials and DGEBA/DDM epoxy, were fabricated to find out its thermal and mechanical properties. FT-IR results showed that the nanocomposites were fully cured and contained OG POSS enough. Thermogravimetric analysis and differential scanning calorimetry were performed to measure the thermal properties of the nanocomposites. The initial mass loss temperature and char yield were increased through the filling of OG POSS. As the content of OG POSS increased, glass transition temperature tended to increase to 5 wt.% of OG POSS, but the temperature decreased significantly at 10 wt.% of OG POSS. The tensile test results showed that the content of OG POSS did not affect tensile strength and tensile stiffness.

International Legal Regulation for Environmental Contamination on Outer Space Activities (우주에서의 환경오염 방지를 위한 국제법적 규제)

  • Lee, Young-Jin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.24 no.1
    • /
    • pp.153-194
    • /
    • 2009
  • The resources of outer space are for the common exploitation of mankind, and it is a common responsibility of mankind to protect the outer space environment. With the rapid development of space science and technology, and especially with the busy space activities of some major space powers, environmental contamination or space debris is steadily increasing in quantity and has brought grave potential threats and actual damage to the outer space environment and human activities in space. Especially We must mitigate and seek out a solution to remove space debris which poses a threat directly to man's exploitation and use of outer space activities in the Low Earth Orbit (LEO) and in the Geostationary Orbit (GEO), through international cooperation and agreement in the fields of space science, economics, politics and law, in order to safeguard the life and property of mankind and protect the earth's environment. While the issue of space debris has been the subject of scientific study and discussion for some time now, it has yet to be fully addressed within the context of an international legal framework. During the earlier stages of the space age, which began in the late 1950s, the focus of international lawmakers and diplomats was the establishment of basic rules which sought to define the legal nature of outer space and set out the parameters for space activities and the nature and scope of activities carried out in outer space were quite limited. Consequently, environmental issues and the risks that might arise from the generation of space debris did not receive priority attention within the context of the development international space law. In recent years, however, the world has seen dramatic advances in technology and increases in the type and number of space-related activities which are being carried out. In addition, the number of actors in this field has exploded from two highly developed States to a vast array of different States, intergovernmental and nongovernmental organizations, including private industry. Therefore, the number of artificial objects in the near-Earth space is continually increasing. As has been previously mentioned, COPUOS was the entity that created the existing five treaties, and five sets of legal Principles, which form the core of space law, and COPUOS is clearly the most appropriate entity to oversee the creation of this regulatory body for the outer space environmental problem. This idea has been proposed by various States and also at the ILA Conference in Buenos Aires. The ILA Conference in Buenos Aires produced an extensive proposal for such a regulatory regime, dealing with space debris issues in legal terms This article seeks to discuss the status of international law as it relates to outer space environmental problem and space debris and indicate a course of action which might be taken by the international community to develop a legal framework which can adequately cope with the complexity of issues that have recently been recognized. In Section Ⅱ,Ⅲ and IV of this article discuss the current status of international space law, and the extent to which some of the issues raised by earth and space environment are accounted for within the existing United Nations multilateral treaties. Section V and VI discuss the scope and nature of space debris issues as they emerged from the recent multi-year study carried out by the ILA, Scientific and Technical Subcommittee, Legal Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space ("COPUOS") as a prelude to the matters that will require the attention of international lawmakers in the future. Finally, analyzes the difficulties inherent in the future regulation and control of space debris and the activities to protect the earth's environment. and indicates a possible course of action which could well provide, at the least, a partial solution to this complex challenge.

  • PDF

Study on the Thermal Buffer Mass and Phase Change Material for Thermal Control of the Periodically Working Satellite Component (주기적으로 작동하는 위성부품 열제어용 열적완충질량과 이를 대체할 상변화물질을 이용한 열제어부품의 비교연구)

  • Kim, Taig Young;Seo, Jung Gi;Hyun, Bum-Seok;Cheon, Hyeong Yul;Lee, Jang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1013-1019
    • /
    • 2014
  • Solid-liquid Phase Change Material(PCM) as a thermal control hardware for the electro-optical payload of low earth orbit satellite is numerically studied which can be substituted with Thermal Buffer Mass(TBM). The electro-optical module in LEO satellite is periodically work and high heat is dissipated during the imaging period, however, the design temperature range is very tight and sensitive. In order to handle this problem TBM is added and as a result the time constant of the module temperature increases. TBM is made of Al6010 and its mass directly affects the system design. To save the mass PCM is suggested in this study. The latent heat of melting or solidification is very high and small amount of PCM can play a role instead of TBM. The result shows that only 12% of TBM mass is enough to control the module temperature using PCM.