• Title/Summary/Keyword: low computation

Search Result 813, Processing Time 0.023 seconds

EFFECTS OF THE LOW REYNOLDS NUMBER ON THE PERFORMANCE OF AN AXIAL COMPRESSOR (저 레이놀즈 수가 압축기 성능에 미치는 영향)

  • Choi, Min-Suk;Baek, Je-Hyun;Oh, Seong-Hwan;Ko, Han-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.138-141
    • /
    • 2007
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density became it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise wag diminished by the separation on the suction surface and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 90% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss using Denton's loss model, and effects of the low Reynolds number on the performance were analyzed in detail.

  • PDF

Design and Implementation of a Low Power Chip with Robust Physical Unclonable Functions on Sensor Systems (센서 시스템에서의 고신뢰 물리적 복제방지 기능의 저전력 칩 설계 및 구현)

  • Choi, Jae-min;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.59-63
    • /
    • 2018
  • Among Internet of things (IoT) applications, the most demanding requirements for the widespread realization of many IoT visions are security and low power. In terms of security, IoT applications include tasks that are rarely addressed before such as secure computation, trusted sensing, and communication, privacy, and so on. These tasks ask for new and better techniques for the protection of data, software, and hardware. An integral part of hardware cryptographic primitives are secret keys and unique IDs. Physical Unclonable Functions(PUF) are a unique class of circuits that leverage the inherent variations in manufacturing process to create unique, unclonable IDs and secret keys. In this paper, we propose a low power Arbiter PUF circuit with low error rate and high reliability compared with conventional arbiter PUFs. The proposed PUF utilizes a power gating structure to save the power consumption in sleep mode, and uses a razor flip-flop to increase reliability. PUF has been designed and implemented using a FPGA and a ASIC chip (a 0.35 um technology). Experimental results show that our proposed PUF solves the metastability problem and reduce the power consumption of PUF compared to the conventional Arbiter PUF. It is expected that the proposed PUF can be used in systems required low power consumption and high reliability such as low power encryption processors and low power biomedical systems.

Image Resolution Improvement Using Image Loss Information (영상의 손실 정보를 이용하는 영상 해상도 개선)

  • Kim, Won-Hee;Kim, Jong-Nam
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.573-577
    • /
    • 2010
  • Image resolution improvement is commonly technique for applications such as image reconstruction or enlargement. It is important to remove image quality degradation such as blocking effect or artificiality occurrence. In this paper, we propose image resolution improvement method using loss information of image. The proposed compute and estimate by low level interpolation of obtained low resolution image, it is applied by interpolated high resolution as 1-stage interpolation. We generate last interpolation image by iteration of error computation and application between obtained low resolution image and 1-stage interpolation image. By experiments using same test images, we confirmed improvement over 3.2dB of average PSNR and enhancement of subject image quality. Also, we can reduce more than 85% computation complexity. The proposed image resolution improvement method may be helpful for various applications of image processing.

Low Energy Motion Estimation Architecture using Energy Management Algorithm (에너지 관리 알고리즘을 이용한 저전력 움직임 추정기 구조)

  • Kim Eung-sup;Lee Chanho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8C
    • /
    • pp.793-800
    • /
    • 2005
  • Computation of multimedia data increases in portable devices with the advances of the mobile and personal communication services. The energy management of such devices is very important for the battery-powered operation hours. The motion estimation in a video encoder requires huge amount of computation, and hence, consumes the largest portion of the energy consumption. In this paper, we propose a novel architecture that a low energy management scheme can be applied with several fast-search algorithms. The energy-constrained Vdd hopping (ECVH) technique reduces power consumption of the motion estimation by adaptively changing the search algorithm, the operating frequency, and the supply voltage using the remaining slack time within given power-budget. We show that the ECVH can be applied to the architecture, and that the power consumption can be efficiently reduced.

An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization (서브블록 히스토그램 등화기법을 이용한 개선된 콘트래스트 강화 알고리즘)

  • Kim, Joung-Youn;Kim, Lee-Sup;Hwang, Seung-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.58-66
    • /
    • 1999
  • In this paper, an advanced histogram equalization algorithm for contrast enhancement is presented. Histogram equalization is the most popular algorithm. Global histogram equalization is simple and fast, but its contrast enhancement power is relatively low. Local histogram equalization, on the other hand, can enhance overall contrast more effectively, but the complexity of computation required is very high. In this paper, a low pass filter type mask is used to get a sub-block histogram equalization function to more simply produce the high contrast. The low pass filter type mask is realized by partially overlapped sub-block histogram equalization (POSHE). With the proposed method. the computation overhead is reduced by a factor of about one hundred compared to that of local histogram equalization while still achieving high contrast.

  • PDF

Low-Power Video Decoding with Optimal Supply Voltage Determination Based on the Number of Non-Coded Blocks (비부호화 블록의 개수를 이용하여 최적 공급 전압을 결정하는 저전력 동영상 복호화 기법)

  • Lee, Seong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1042-1050
    • /
    • 2005
  • This paper proposed a novel low-power video decoding scheme for mobile multimedia communication. In general, there are quite a large number of non-coded blocks in the encoded bitstream where all quantized DCT coefficients are truncated into zero. When the number of the non-coded blocks are known at the start of frame decoding, the amount of computation reduction can be precisely estimated for frame decoding. When the computation reduces, the operation speed and the corresponding supply voltage of VLSI circuits in the decoder also reduce, thus thus power consumption also reduces. In the proposed scheme, the number of the non-coded blocks is stored in the frame header of the encoded bitstream, and the decoder efficiently reduces the power consumption exploiting this information. Simulation results show that the proposed scheme reduces the power consumption to about 1/20.

  • PDF

Design Reliability Estimation of Low Energy Exploding Foil Initiator (LEEFI형 착화장치의 설계 신뢰도 추정)

  • Lee, Minwoo;Back, Seungjun;Son, Youngkap;Jang, Seung-gyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.40-48
    • /
    • 2018
  • This paper presents a simulation-based design reliability estimation method of a low-energy exploding foil initiator (LEEFI) using a meta-model and describes the design reliability estimation results. The flyer velocity of the LEEFI is critical to initiate the explosive. Evaluation of the flyer velocity from mechanistic models in open literature requires a long computation time due to the multi-physical phenomena that generate the velocity. Moreover, the higher levels of confidence required for an initiator with high reliability incur higher computation costs. Thus, a meta-model of the flyer velocity over time was constructed in order to increase the computational efficiency for a reliable estimation. For different distributions and sigma levels of the design variables, the design reliability estimation results using the meta-model are provided. Additionally, the computational efficiency and accuracy of the estimation method are analyzed.

Effects of the Low Reynolds Number on the Loss Characteristics in a Transonic Axial Compressor

  • Choi, Min-Suk;Oh, Seong-Hwan;Ko, Han-Young;Baek, Je-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.202-212
    • /
    • 2008
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the loss characteristics in a transonic axial compressor, Rotor67. As a gas turbine becomes smaller in size and it is operated at high altitude, the operating condition frequently lies at low Reynolds number. It is generally known that wall boundary layers are thickened and a large separation occurs on the blade surface in axial turbomachinery as the Reynolds number decreases. In this study, it was found that the large viscosity did not affect on the bow shock at the leading edge but significantly did on the location and the intensity of the passage shock. The passage shock moved upstream towards leading edge and its intensity decreased at the low Reynolds number. This change had large effects on the performance as well as the internal flows such as the pressure distribution on the blade surface, tip leakage flow and separation. The total pressure rise and the adiabatic efficiency decreased about 3% individually at the same normalized mass flow rate at the low Reynolds number. In order to analyze this performance drop caused by the low Reynolds number, the total pressure loss was scrutinized through major loss categories such as profile loss, tip leakage loss, endwall loss and shock loss.

  • PDF

A Variable Step-Size NLMS Algorithm with Low Complexity

  • Chung, Ik-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3E
    • /
    • pp.93-98
    • /
    • 2009
  • In this paper, we propose a new VSS-NLMS algorithm through a simple modification of the conventional NLMS algorithm, which leads to a low complexity algorithm with enhanced performance. The step size of the proposed algorithm becomes smaller as the error signal is getting orthogonal to the input vector. We also show that the proposed algorithm is an approximated normalized version of the KZ-algorithm and requires less computation than the KZ-algorithm. We carried out a performance comparison of the proposed algorithm with the conventional NLMS and other VSS algorithms using an adaptive channel equalization model. It is shown that the proposed algorithm presents good convergence characteristics under both stationary and non-stationary environments despites its low complexity.

DESIGN-ORIENTED AERODYNAMIC ANALYSES OF HELICOPTER ROTOR IN HOVER (정지비행 헬리콥터 로터의 설계를 위한 공력해석)

  • Jung H.J.;Kim T.S.;Son C.H.;Joh C.Y.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.1-7
    • /
    • 2006
  • Euler and Navier-Stokes flow analyses for helicopter rotor in hover were performed as low and high fidelity analysis models respectively for the future multidisciplinary design optimization(MDO). These design-oriented analyses possess several attributes such as variable complexity, sensitivity-computation capability and modularity which analysis models involved in MDO are recommended to provide with. To realize PC-based analyses for both fidelity models, reduction of flow domain was made by appling farfield boundary condition based on 3-dimensional point sink with simple momentum theory and also periodic boundary condition in the azimuthal direction. Correlations of thrust, torque and their sensitivities between low and high complexity models were tried to evaluate the applicability of these analysis models in MDO process. It was found that the low-fidelity Euler analysis model predicted inaccurate sensitivity derivatives at relatively high angle of attack.