• Title/Summary/Keyword: low cement content

Search Result 223, Processing Time 0.032 seconds

Selection of Suitable Aggregates for Long-term Stability of Concrete (콘크리트 장기 안정성을 위한 골재의 선택)

  • Yang, Dong-Yoon;Lee, Dong-Young
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 1995
  • Recently, there have been several cases of serious accidents on concrete structure resulting from rapid deterioration of concrete strength. On the view point of long term stability of concrete, deterioration of concrete strength is mostly due to chemical reaction between alkali and reactive aggregates (alkali-aggreagte reaction; AAR) in concrete rather than a problem of execution. For long-term stability of concrete, concrete aggregates must be carefully selected. Some of rocks used for concrete aggregates contain deleterious minerals reactive to alkali components in concrete. Most of AAR result from chemical reaction between alkali components and reactive silica minerals in aggregates (so called alkali-silica reaction; ASR). The silica minerals are as follows; quartz with seriously distorted lattice structure, volcanic glass, chalcedony, opal, cristobalite, tridymite, etc. ASR may cause expansion and cracks, further collapse in concrete structure, in a few years. In case of crushed aggregates, only a part of rock mass without reactive minerals must be produced in aggregates mine after thorough examination of the distribution of rocks with reactive minerals. In case of natural aggregates, the total content of reactive minerals must be calculated, if, the content is more than 20%, the rate should be lower by mixing other non-reactive crushed- or natural aggregates. If it is obliged to use concrete aggregates all containing deleterious minerals in a discrete area, they must be used with low alkali cement Even if it is low quality in the chemical properties, aggregates with suitable range in the physical properties can be utilized as the aggregate of other purposes.

  • PDF

Characteristics of Ternary Blended Cement Concrete Using Fly Ash and Silica Fume for Post-Tensioned Concrete Pavement Application (포스트텐션 콘크리트 포장 적용을 위한 실리카흄과 플라이 애시를 사용한 삼성분계 콘크리트의 특성)

  • Choi, Pan-Gil;Shim, Do-Sick;Lee, Bong-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.41-47
    • /
    • 2009
  • Post-tensioned concrete pavement(PTCP) was developed to built long-span concrete pavement(120 m span) and to maintain long-term service life(over 40 years) of concrete pavement. In the present study, research for high-durable concrete was conducted to utilize the advantage of PTCP construction method efficiently. First of all, 20% of fly ash(by binder weight) was replaced to control alkali silica reaction. Second, silica fume was applied to improve the water-permeability and early-age strength. Results of tests for mechanical properties, water-permeability resistance, and surface-scaling resistance of ternary blended cement concrete showed that the early-age strength was improved significantly with addition of silica fume. The water-permeability resistance was improved from "Low" to "Very Low"(ASTM C 1202). However, surface-scaling resistance was decreased with an increase of silica fume, therefore, content of silica fume should be kept in less than 5%(by binder weight) to assure field application considering durability. The results of air-void analysis showed that durability factors were improved since spacing factors were estimated as 250$\pm$15 micron in adjusted mixtures.

The Effects of Insoluble Polymers on Water Stability of Carbon Fiber Reinforced Polymer-MDF Cementitious Composites (불용성 폴리머가 탄소섬유 보강 Polymer-MDF 시멘트 복합재료의 기계적 특성에 미치는 영향)

  • 김태진;박춘근
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.84-90
    • /
    • 1999
  • High alumina cement(HAC) and polyvinyl alcohol(PVA) based macro-defect-free(MDF) cement composites were reinforced using short carbon fibers, 3mm in length, 1-4% in weight fraction and insoluble polymers such as polyurethane, epoxy, phenol resin, in order to increase mechanical properties and water stability. The specimens were manufactured by the low heat-press(warmpress) method. In addition, the interface and the cross-linking reaction of cement and polymers was also studied by the SEM and TEM. Flexural strength of HAC/PVA based MDF cementitious composites was proportionally decreased with increasing fiber contents due to the undensified structure around fibers. The flexural strength of insoluble polymer added specimen was decreased with increasing fiber contents, while water stability was dramatically improved. Epoxy resin added specimen showed the highest strength with increasing fiber contents, compared with other specimens. The water stability of fiber content 4% added specimen immersed in water presented about 95%, 87% at 3 and 7 days immersed in water, respectively. The interfacial adhesive strength of fiber-matrix was very much improved due to cross linking reaction of polymer and metal ions of cement. Tensile strength of insoluble polymers added composites as linearly increased with increasing the fiber contents. The epoxy resin added specimen also showed highest tensile strength. The 4% fiber added specimen presented 30~80% higher strength than controlled specimen.

  • PDF

The Frost-Susceptibility of Compacted Coal Ash with Proper Mixing Ratio of Fly Ash to Bottom Ash (비회와 저회의 적정 혼합비로 다짐한 석탄회의 동상성)

  • Chun, Byung Sik;Gang, In Sung;Koh, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.173-178
    • /
    • 1993
  • The most appropriate mixing ratio of fly ash to bottom ash obtained from compaction characteristics and CBR values is varying from 5:5 to 6:4. But these mixed ashes are frost-susceptible materials according to judging by the paticle-size distribution because of a lot of silty-size paticles. In this study, the frost-susceptibility of compacted coal ash with proper mixing ratio is examined experimentally for use of subgrade materials. And, the efforts have been made to find proper cement addition in making these mixed ashes frost-insusceptible. It was revealed that these mixed ashes are frost-susceptible, and 4% of cement content is required to be made frost-insusceptable. It was found that amount of frost heave of these mixed ashes decreases with the unconfined compressive strength, and increases with log k if the permeability coefficient k is as low as the water into the freezing front of these mixed ashes is restricted.

  • PDF

Study of heavy fuel oil fly ash for use in concrete blocks and asphalt concrete mixes

  • Al-Osta, Mohammed A.;Baig, Mirza G.;Al-Malack, Muhammad H.;Al-Amoudi, Omar S. Baghabra
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.123-143
    • /
    • 2016
  • Use of heavy fuel fly ash (HFFA) (diesel and cracked fuel) for power generation in Saudi Arabia has generated and accumulated large quantities of HFFA as a byproduct. In this research, HFFA is studied with the emphasis on the utilization of this waste material in concrete blocks and asphalt concrete mixes. Two types of mixes, one with low and other with high cement content, were studied for concrete blocks. Different mixes having varying percentages of HFFA (0% to 25%), as cement/sand replacement or as an additive, were studied. The performance of concrete blocks is evaluated in terms of compressive strength, water absorption, durability and environmental concerns. The results showed that blocks cannot be cast if more than 15% HFFA is used; also there is a marginal reduction in the strength of all the mixes before and after being exposed to the sulfate solution for a period of ten months. HFFA is studied in asphalt concrete mixes in two ways, as an asphalt modifier (3&5%) and as a filler (50%) replacement, the results showed an improvement in stiffness and fatigue life of mixes. However, the stability and indirect tensile strength loss were found to be high as compared to the control mix due to moisture damage, indicating a need of using antistripping agents. On environmental concerns, it was found that most of the concerned elements are within acceptable limits also it is observed that lower concentration of barium is leached out with the higher HFFA concentrations, which indicates that HFFA may work as an adsorbent for this leaching element.

An Fundamental Study on the Earth Wall Material Development by using of Lime Composition and Earth (석회복합체와 흙을 이용한 흙벽체 재료 개발에 관한 기초적 연구)

  • Hwang, Hey zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.115-121
    • /
    • 2010
  • Lime was the solidifier mostly used at the fields of construction and civil works in the past. however, the development of Portland cement remarkably reduced the use of it. Recently as the concernment on circumstances gets higher, lime wined attention again as an eco-friendly material and was used at earth-using construction. This study examined the physical and chemical capacity of lime complexes with lime capacity improved, and performed fundamental study on the way to concretize by mixing it with earth. As a result, lime complex pressure strength was lower than cement pressure strength but it showed the possibility that its strength was improved by W/B control. The measurement of XRD after paste formation confirmed a compound generated by the reaction of Ca2+ion and Si, Al, and Fe from pozzolan reaction. A earth wall experiment by using lime complexes and earth showed that the higher, WB or the lower the quantity of unit combined materials, the lower the pressure strength was. The maximum pressure strength was maximum 11MPa when the quantity of unit combined materials was 450. It is because the composed earth particles had a high content of micro powder less than silt, so a lot of combination are demanded to secure fluidity. As a result of peptization experiment, after hardening, the material was not dissolved, which informed of the possibility of use as an outer subsidiary material. If the material is hardened by mold formation method, natural hardening crack appears. Cast expresses smart surface quality and enables to design for multiple purpose. The result shows the possibility of construction of low-story structures by using earth wall made of lime complexes and earth.

Reactivity of aluminosilicate materials and synthesis of geopolymer mortar under ambient and hot curing condition

  • Zafar, Idrees;Tahir, Muhammad Akram;Hameed, Rizwan;Rashid, Khuram;Ju, Minkwan
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.71-81
    • /
    • 2022
  • Aluminosilicate materials as precursors are heterogenous in nature, consisting of inert and partially reactive portion, and have varying proportions depending upon source materials. It is essential to assess the reactivity of precursor prior to synthesize geopolymers. Moreover, reactivity may act as decisive factor for setting molar concentration of NaOH, curing temperature and setting proportion of different precursors. In this experimental work, the reactivities of two precursors, low calcium (fly ash (FA)) and high calcium (ground granulated blast furnace slag (GGBS)), were assessed through the dissolution of aluminosilicate at (i) three molar concentrations (8, 12, and 16 M) of NaOH solution, (ii) 6 to 24 h dissolution time, and (iii) 20-100℃. Based on paratermeters influencing the reactivity, different proportions of ternary binders (two precursors and ordinary cement) were activated by the combined NaOH and Na2SiO3 solutions with two alkaline activators to precursor ratios, to synthesize the geopolymer. Reactivity results revealed that GGBS was 20-30% more reactive than FA at 20℃, at all three molar concentrations, but its reactivity decreased by 32-46% with increasing temperature due to the high calcium content. Setting time of geopolymer paste was reduced by adding GGBS due to its fast reactivity. Both GGBS and cement promoted the formation of all types of gels (i.e., C-S-H, C-A-S-H, and N-A-S-H). As a result, it was found that a specified mixing proportion could be used to improve the compressive strength over 30 MPa at both the ambient and hot curing conditions.

Evaluating the bond strength between concrete substrate and repair mortars with full-factorial analysis

  • Felekoglu, Kamile Tosun;Felekoglu, Burcu;Tasan, A. Serdar;Felekoglu, Burak
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.651-668
    • /
    • 2013
  • Concrete structures need repairing due to various reasons such as deteriorative effects, overloading, poor quality of workmanship and design failures. Cement based repair mortars are the most widely used solutions for concrete repair applications. Various factors may affect the bond strength between concrete substrate and repair mortars. In this paper, the effects of polymer additives, strength of the concrete substrate, surface roughness, surface wetness and aging on the bond between concrete substrate and repair mortar has been investigated. Full factorial experimental design is employed to investigate the main and interaction effects of these factors on the bond strength. Analysis of variance (ANOVA) under design of experiments (DOE) in Minitab 14 Statistical Software is used for the analysis. Results showed that the interaction bond strength is higher when the application surface is wet and strength of the concrete substrate is comparatively high. According to the results obtained from the analysis, the most effective repair mortar additive in terms of bonding efficiency was styrene butadiene rubber (SBR) within the investigated polymers and test conditions. This bonding ability improvement can be attributed to the self-flowing ability, high flexural strength and comparatively low air content of SBR modified repair mortars. On the other hand, styrene acrylate rubber (SAR) modified mortars was found incompatible with the concrete substrate.

Mechanical properties of SFRHSC with metakaolin and ground pumice: Experimental and predictive study

  • Saridemir, Mustafa;Severcan, Metin Hakan;Celikten, Serhat
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.543-555
    • /
    • 2017
  • The mechanical properties of steel fiber reinforced high strength concrete (SFRHSC) made with binary and ternary blends of metakaolin (MK) and ground pumice (GP) are investigated in this study. The investigated properties are ultrasonic pulse velocity ($U_{pv}$), compressive strength ($f_c$), flexural strength ($f_f$) and splitting tensile strength ($f_{st}$) of SFRHSC. A total of 16 steel fiber reinforced concrete mixtures were produced by a total binder content of $500kg/m^3$ for determining the effects of MK and GP on the mechanical properties. The design $f_c$ was acquired from 70 to 100 MPa by using a low water-binder ratio of 0.2. The test results exhibit that high strength concrete can be obtained by replacing the cement with MK and GP. Besides, correlations between these results are executed for comprehending the relationship between mechanical properties of SFRHSC and the strong correlations are observed between these properties. Moreover, two models in the gene expression programming (GEP) for predicting the $f_c$ of SFRHSC made with binary and ternary blends of MK and GP have been developed. The results obtained from these models are compared with the experimental results. These comparisons proved that the results of equations obtained from these models seem to agree with the experimental results.

Stabilization of Lateritic Soil with Eggshell Powder

  • Ndagijima, Jacques;Kim, Kanghyun;Kim, Seunghyun;Shin, Jongho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.1
    • /
    • pp.5-13
    • /
    • 2022
  • In tropical regions, lateritic soil is frequently used in road embankment. However, it is one of the sources of road failure owing to its low strength. Generally, cement and lime are used as stabilizers for lateritic soil, but they are not environmentally friendly. Some studies try to use eggshells, for they are food waste and share the same chemical composition as lime. Previous researchs have shown that eggshell powder could enhance the strength of lateritic soil. This research investigated the effect of particle size of the eggshell powder and the effect of the protein-membrane presence in the eggshell on stabilizing capacity of soil. Through laboratory tests, unconfined compressive strength was examined for various particle sizes. The particle size of eggshell powder ranging between 150 ㎛ and 88 ㎛ was appropriate size that made an excellent stabilizer at 3% concentration. On the other hand, the protein-membrane reduced the stabilizing ability of the eggshell powder when the content of eggshell powder is less than 4% in soil. Numerical analysis of road embankment was performed based on the results obtained in the laboratory tests. It is shown that the eggshell powder has improved the stability of the sub-base of the road embankment.