• Title/Summary/Keyword: low carbon

Search Result 4,438, Processing Time 0.033 seconds

Effect of Cr, Mo and W on the Microstructure of Al Hot Dipped Carbon Steels

  • Trung, Trinh Van;Kim, Min Jung;Park, Soon Yong;Yadav, Poonam;Abro, Muhammad Ali;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • A low carbon steel, Fe-2.25%Cr steel (ASTM T22), and Fe-2.25%Cr-1.6%W steel (ASTM T23) were aluminized by hot dipping into molten Al baths. After hot-dipping, a thin Al-rich topcoat and a thick alloy layer formed on the surface. The topcoat consisted primarily of a thin Al layer that contained a small amount of Fe, whereas the alloy layer consisted of Al-Fe intermetallics such as $Al_5Fe_2$ and AlFe. Cr, Mo, and W in T22 and T23 steels reduced the thickness of the topcoat and the alloy layer, and flattened the reaction front of the aluminized layer, when compared to the low carbon steel.

A Development of Connection Piece Steel Casting for the Offshore Structures Using High Impact Value with Low Temperature & High Strength Casting Steel Material (고강도 및 저온 고충격 주강소재를 이용한 해양플렌트용 커넥트 주강부품 개발)

  • Kim, Tae-Eon;Park, Sang-Sik;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.151-156
    • /
    • 2010
  • The high-strength low-alloy (HSLA) steels have low carbon contents (0.05~0.25% C) in order to produce adequate formability and weldability, and they have manganese contents up to 1.7%. Small quantities of silicon, chromium, nickel, copper, aluminum, molybdenum are used in various combinations. The results contained in this paper can provide the valuable information on the development of $-40^{\circ}C$ low temperature HSLA. Furthermore, the present experimental data will provide important database for casting steel materials of the offshore structure.

Design for Carbon Neutral Arboretum in Gwangju Metropolitan City (광주광역시 탄소중립 수목원 설계)

  • Kim, Hoon Hee
    • KIEAE Journal
    • /
    • v.9 no.3
    • /
    • pp.61-68
    • /
    • 2009
  • Gwangju Metropolitan Government & Ministry of Environment have signed a model city in response to Climate Change agreement. The agreement calls for Gwangju to cut greenhouse gas emissions 10% below 2005 levels by 2015. Gwangju has seen this agreement as an opportunity to cut pollution and conserve the environment as well as to reinvigorate local economy. According to policy of Gwangju, Gwangju held design competition for Gwangju City Arboretum on march, 2009. The purpose of design competition was to give a wide publicity to Gwangju as Hub City of Asian Culture and construct carbon-neutral arboretum in accordance with the policy of 'Low-Carbon and Green Growth'. First of all, a design concept of arboretum is 'winding, round, overlay 'to reflect the landscape of Nam-do which is surrounded by mountains and river flows through the village. Second, the arboretum has five different places with these themes - Forest of Festivals, Health, Nature, Nostalgia, Education and Future. Each place has a symbolic theme park and different flow planning respectively. Third, the most critical point is that the arboretum is a carbon-neutral park. Gwangju arboretum will soon be developed in metropolitan sanitary landfill and constructed as the O2 arboretum based on low carbon strategy. Fourth, the O2 arboretum suggests specialized issue : 'Energy Saving', 'Recycling System', 'Green Network', 'Water System(rainwater maintenance and wetland development)'. Besides, main buildings(greenhouse, visitor center, Nam-do experience exhibition hall, and forest museum) is designed in consideration of harmony with topography character, surroundings. Also, planting will be a multilayer plant based on native landscape trees in consideration of function and the growth characteristics.

High aspect ratio wrinkled patterns on polymers by glancing angle deposition

  • Ko, Tae-Jun;Ahmed, Sk. Faruque;Lee, Kwang-Ryeol;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.335-335
    • /
    • 2011
  • Instability of a thin film attached to a compliant substrate often leads to emergence of exquisite wrinkle patterns with length scales that depend on the system geometry and applied stresses. However, the patterns that are created using the current techniques in polymer surface engineering, generally have low aspect ratio of undulation amplitude to wavelength, thus, limiting their application. Here, we present a novel and effective method that enables us to create wrinkles with a desired wavelength and high aspect ratio of amplitude over wavelength as large as to 2.5:1. First, we create buckle patterns with high aspect ratio of amplitude to wavelength by deposition of an amorphous carbon film on a surface of a soft polymer poly(dimethylsiloxane) (PDMS). Amorphous carbon films are used as a protective layer in structural systems and biomedical components, due to their low friction coefficient, strong wear resistance against, and high elastic modulus and hardness. The deposited carbon layer is generally under high residual compressive stresses (~1 GPa), making it susceptible to buckle delamination on a hard substrate (e.g. silicon or glass) and to wrinkle on a flexible or soft substrate. Then, we employ glancing angle deposition (GLAD) for deposition of a high aspect ratio patterns with amorphous carbon coating on a PDMS surface. Using this method, pattern amplitudes of several nm to submicron size can be achieved by varying the carbon deposition time, allowing us to harness patterned polymers substrates for variety of application. Specifically, we demonstrate a potential application of the high aspect wrinkles for changing the surface structures with low surface energy materials of amorphous carbon coatings, increasing the water wettability.

  • PDF

Economic Analysis and Comparison between Low-Power and High-Power SOEC Systems (저출력 및 고출력 SOEC 시스템의 경제성 분석 비교)

  • TUANANH BUI;YOUNG SANG KIM;DONG KEUN LEE;KOOK YOUNG AHN;YONGGYUN BAE;SANG MIN LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.707-714
    • /
    • 2022
  • Hydrogen production using solid oxide electrolysis cells (SOEC) is a promising technology because of its efficiency, cleanness, and scalability. Especially, high-power SOEC system has received a lot of attention from researchers. This study compared and analyzed the low-power and high-power SOEC system in term of economic. By using revenue requirement method, levelized cost of hydrogen (LCOH) was calculated for comparison. In addition, the sensitivity analysis was performed to determine the dependence of hydrogen cost on input variables. The results indicated that high-power SOEC system is superior to a low-power SOEC system. In the capital cost, the stack cost is dominant in both systems, but the electricity cost is the most contributed factor to the hydrogen cost. If the high-power SOEC system combines with a nuclear power plant, the hydrogen cost can reach 3.65 $/kg when the electricity cost is 3.28 ¢/kWh and the stack cost is assumed to be 574 $/kW.

Low Carbonization Technology & Traceability for Sustainable Textile Materials (지속가능 섬유 소재 추적성과 저탄소화 공정)

  • Min-ki Choi;Won-jun Kim;Myoung-hee Shim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.673-689
    • /
    • 2023
  • To realize the traceability of sustainable textile products, this study presents a low-carbon process through energy savings in the textile material manufacturing process. Traceability is becoming an important element of Life Cycle Assessment (LCA), which confirms the eco-friendliness of textile products as well as supply chain information. Textile products with complex manufacturing processes require traceability of each step of the process to calculate carbon emissions and power usage. Additionally, an understanding of the characteristics of the product planning-manufacturing-distribution process and an overall understanding of carbon emissions sources are required. Energy use in the textile material manufacturing stage produces the largest amount of carbon dioxide, and the amount of carbon emitted from processes such as dyeing, weaving and knitting can be calculated. Energy saving methods include efficiency improvement and energy recycling, and carbon dioxide emissions can be reduced through waste heat recovery, sensor-based smart systems, and replacement of old facilities. In the dyeing process, which uses a considerable amount of heat energy, LNG, steam can be saved by using "heat exchangers," "condensate management traps," and "tenter exhaust fan controllers." In weaving and knitting processes, which use a considerable amount of electrical energy, about 10- 20% of energy can be saved by using old compressors and motors.

Carbon Storage Estimation of Urban Area Using KOMPSAT-2 Imagery (KOMPSAT-2호 위성영상을 이용한 도시지역 탄소저장량 추정)

  • Kim, Ki-Tae;Cho, Jin-Woo;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.49-54
    • /
    • 2011
  • Recently Korean government announced the vision for low-carbon green growth. Quantifying of the carbon storage, distribution, and change of urban trees is vital to understanding the role of vegetation in the urban environment. In the city planning the carbon storage estimation has become an important factor. In this paper, KOMPSAT-2 satellite imagery was used to develop a method to predict the urban forest carbon storage from the Normalized Difference Vegetation Index (NDVI) computed from a time sequence image data. The total carbon storage change by trees in the 6 administrative zonings of Jinju was estimated using the image data in 2007 and 2009. Therefore the paper presents a method based on the satellite images, which can estimate the spread of urban tree and carbon storage variation using KOMPSAT-2.

$Co_2$ Corrosion Mechanism of Carbon Steel in the Presence of Acetate and Acetic Acid

  • Liu, D.;Fu, C.Y.;Chen, Z.Y.;Guo, X.P.
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.227-232
    • /
    • 2007
  • The corrosion behavior of carbon steel (N80) in carbon dioxide saturated 1%NaCl solution with and without acetic acid or acetate was investigated by weight-loss test, electrochemical methods (polarization curve, Electrochemical impedance spectroscopy). The major objective is to make clear that the effect of acetic acid and acetate on the corrosion of carbon steel in $Co_2$ environments. The results indicate that either acetic acid or acetate accelerates cathodic reducing reaction, facilitates dissolution of corrosion products on carbon steel, and so promotes the corrosion rate of carbon steel in carbon dioxide saturated NaCl solution. All Nyquist Plots are consisting of a capacitive loop in high frequency region, an inductive loop in medial frequency region and a capacitive arc in low frequency region. The high frequency capacitive loop, medial frequency inductive loop and low frequency capacitive arc are corresponding to the electron transfer reaction, the formation/adsorption of intermediates and dissolution of corrosion products respectively. All arc of the measured impedance reduced with the increase of the concentration of Ac-, especially HAc. However, the same phenomenon is not notable after reducing pH value by adding HCl. HAc is a stronger proton donor and can be reduced directly by electrochemical reaction firstly. Ac- can't participate in electrochemistry reaction directly, but $Ac^-$ an hydrate easily to create HAc in carbon dioxide saturated environments. HAc is as catalyst in $Co_2$ corrosion. As a result, the corrosion rate was accelerated in the presence of acetate ion even pH value of solution increased.

Assessment of Carbon Storage Capacity of Stands in Abandoned Coal Mine Forest Rehabilitation Areas over time for its Development of Management Strategy (폐탄광 산림복구지 관리방안 도출을 위한 산림복구 후 시간경과에 따른 임분탄소저장량 평가)

  • Mun Ho Jung;Kwan In Park;Ji Hye Kim;Won Hyun Ji
    • Journal of Environmental Science International
    • /
    • v.32 no.4
    • /
    • pp.233-242
    • /
    • 2023
  • The objective of this study was to develop a management strategy for the recovery of carbon storage capacity of abandoned coal mine forest rehabilitation area. For the purpose, the biomass and stand carbon storage over time after the forest rehabilitation by tree type for Betula platyphylla, Pinus densiflora, and Alnus hirsuta trees which are major tree species widely planted for the forest rehabilitation in the abandoned coal mine were calculated, and compared them with general forest. The carbon storage in abandoned coal mine forest rehabilitation areas was lower than that in general forests, and based on tree species, Pinus densiflora stored 48.9%, Alnus hirsuta 41.1%, and Betula platyphylla 27.0%. This low carbon storage is thought to be caused by poor growth because soil chemical properties, such as low TOC and total nitrogen content, in the soil of abandoned coal mine forest rehabilitation areas, were adverse to vegetation growth compared to those in general forests. DBH, stand biomass, and stand carbon storage tended to increase after forest rehabilitation over time, whereas stand density decreased. Stand' biomass and carbon storage increased as DBH and stand density increased, but there was a negative correlation between stand density and DBH. Therefore, after forest rehabilitation, growth status should be monitored, an appropriate growth space for trees should be maintained by thinning and pruning, and the soil chemical properties such as fertilization must be managed. It is expected that the carbon storage capacity the forest rehabilitation area could be restored to a level similar to that of general forests.

A Study on the Environmental Effects of Improvement of Activated Carbon Adsorption Tower for the Application of Activated Carbon Co-Regenerated System in Sihwa/Banwal Industrial Complex (시화반월산업단지 활성탄 공동재생시스템 적용을 위한 활성탄 흡착탑 개선에 따른 환경적 효과분석)

  • Choi, Ye Jin;Rhee, Young Woo;Chung, Gu Hoi;Kim, Duk Hyun;Park, Seung Joon
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.160-167
    • /
    • 2021
  • This study investigated the environmental effects of improving the general-type activated carbon adsorption tower used at the Sihwa/Banwol Industrial Complex with use of a cartridge-type activated carbon adsorption tower for the application of an activated carbon co-regenerated system. Four general-type activated carbon adsorption towers and two cartridge-type activated carbon adsorption towers were selected to analyze the properties of activated carbon and to compare the efficiency of reducing environmental pollutants. The results showed that the activated carbon used in the cartridge-type activated carbon adsorption towers was high quality activated carbon with an iodine adsorption force of more than 800 mg/g and that a good adsorption performance was maintained within the replacement cycle. From an analysis of the environmental pollutant reduction efficiency, it was confirmed that the cartridge-type activated carbon adsorption tower functioned properly as a prevention facility for handling emissions pollutants with a treatment efficiency of total hydrocarbons (THC), toluene, and methylethylketone (MEK) components of 71%, 77%, and 80%, respectively. The general activated carbon adsorption tower, which was confirmed to use low-performance activated carbon, had a very low treatment efficiency and did not function properly as a prevention facility for dealing with emission pollutants. It is believed that it is possible to reduce pollutants during operations by changing from the general-type activated carbon adsorption tower to a cartridge-type activated carbon adsorption tower.