• Title/Summary/Keyword: low NOx

Search Result 611, Processing Time 0.023 seconds

The Comparison Study on Reburning Effects of LNG and Rice Husk in Heavy Oil Flamed Furnace (중유 화염 연소로에서 LNG와 왕겨분말의 재연소 효과 비교)

  • Shin, Myeung-Chul;Kim, Se-Won;Lee, Chang-Yeop
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.25-32
    • /
    • 2009
  • In commercial combustion systems, heavy oil is one of main hydrocarbon fuel because of its economical efficiency. Regarding heavy oil combustion, due to increasing concerns over environmental pollutants such as carbon monoxide, unburned hydrocarbon and nitrogen oxides, development of low pollutant emission methods has become an imminent issue for practical application to numerous combustion devices. Also a great amount of effort has been tried to developed effective methods for practical using of biomass. It is also an important issue to reduce carbon tax. In this paper, an experimental study has been conducted to evaluate the effect of biomass reburning on NOx formation in a heavy oil flamed combustion furnace. Experiments were performed in flames stabilized by a multi-staged burner, which was mounted at the front of the furnace. Experimental tests were conducted using air-carried rice husk powder and LNG as the reburn fuel and heavy oil as the main fuel. The paper reports data on flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. NOx concentration in the exhaust has decreased considerably due to effect of reburning. The maximum NOx reduction rate was 62% when the rice husk was used by reburn fuel, however it was 59% when the LNG was used by reburn fuel. The result shows the positive possibility of biomass reburning system for optimal NOx reduction.

  • PDF

Fundamental Study on the Development of the EGR Efficiency (Part I: Effects of Reformer Gas Addition in $CH_4/air$ Premixed Flames) (다양한 연료의 EGR 성능개선에 관한 기초연구(Part I: 메탄/air 예혼합화염에서 RG의 첨가효과))

  • Lee, Chang-Eon;Hwang, Cheol-Hong;Tak, Young-Jo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • In this study, the effect of reformer gas(RG) on the performance development of the exhaust gas recirculation(EGR) was investigated numerically in $CH_4/air$ premixed flame. Typically EGR is used to reduce the flame temperature and NOx emission, whereas RG can be used to improve the flame stability, such as homing velocity. This competitive relationship is focused in this study. As a result, it can be identified that the adjustments of EGR and RG ratio can achieve the low NOx emission and the similar flame stability to pure $CH_4/air$ premixed flame simultaneously.

  • PDF

Enhancement of NOx photo-oxidation by Fe-doped TiO2 nanoparticles

  • Martinez-Oviedo, Adriana;Ray, Schindra Kumar;Gyawali, Gobinda;Rodriguez-Gonzalez, Vicente;Lee, Soo Wohn
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.3
    • /
    • pp.222-230
    • /
    • 2019
  • Microwave hydrothermal-assisted sol-gel method was employed to synthesize the Fe doped TiO2 photocatalyst. The morphological analysis suggests anatase phase nanoparticles of ~20 nm with an SBET area of 283.99 ㎡/g. The doping of Fe ions in TiO2 created oxygen vacancies and Ti3+ species as revealed through the XPS analysis. The reduction of the band gap (3.1 to 2.8 eV) is occurred by doping effect. The as-prepared photocatalyst was applied for removal of NOx under solar light irradiation. The doping of Fe in TiO2 facilitates 75 % of NOx oxidation efficiency which is more than two-fold enhancement than the TiO2 photocatalyst. The possible reason of enhancement is associated with high surface area, oxygen vacancy, and reduction of the band gap. Also, the low production of toxic intermediates, NO2 gas, is further confirmed by Combustion Ion Chromatography. The mechanism related NOx oxidation by the doped photocatalyst is explained in this study.

Low Temperature Selective Catalytic Reduction of NO with $NH_3$ over Mn/$CeO_2$ and Mn/$ZrO_2$ (Mn/$CeO_2$와 Mn/$ZrO_2$ 촉매 상에서 $NH_3$를 사용한 NO의 선택적 촉매 산화 반응)

  • Ko, Jeong Huy;Park, Sung Hoon;Jeon, Jong-Ki;Sohn, Jung Min;Lee, See-Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • Manganese (Mn) catalysts were generated using $CeO_2$ and $ZrO_2$supports synthesized by the supercritical hydrothermal method and two different Mn precursors, aimed at an application for a low-temperature selective catalytic reduction process. Manganese acetate (MA) and manganese nitrate (MA) were used as Mn precursors. Effects of the kind and the concentration of the Mn precursor used for catalyst generation on the NOx removal efficiency were investigated. The characteristics of the generated catalysts were analyzed using $N_2$ adsorption-desorption, thermo-gravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. De-NOx experiments were carried out to measure NOx removal efficiencies of the catalysts. NOx removal efficiencies of the catalysts generated using MA were superior to those of the catalysts generated using MN at every temperature tested. Analyses of the catalyst characteristics indicated that the higher NOx removal efficiencies of the MA-derived catalysts stemmed from the higher oxygen mobility and the stronger interaction with support material of $Mn_2O_3$ produced from MA than those of $MnO_2$ produced from MN.

A Study of the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.696-701
    • /
    • 2018
  • The nitrogen oxides generated during combustion reactions have a great influence on the generation of acid rain and fine dust. As an NOx reduction method, exhaust gas recirculation combustion using Coanda nozzles capable of recirculating a large amount of exhaust gas with a small amount of air has recently been utilized. In this study, for the burner outlet with dual end opening, the use of a recirculation burner was investigated for the distribution of the pressure, streamline, temperature, combustion reaction rate and nitrogen oxides using computational fluid analysis. The gas mixed with the combustion air and the recirculated exhaust gas flow in the tangential direction of the circular cylinder burner, so that there is a region with low pressure in the vicinity of the fuel nozzle exit. As a result, a reverse flow is formed in the central portion of the burner near the center of the circular cylinder burner and the exhaust gas is discharged to the outside region of the circular cylinder burner. The combustion reaction occurs on the right side of the burner and the temperature and NOx distribution are relatively higher than those on the left side of the burner. It was found that the average NOx production decreased from an air flow ratio of 1.0 to 1.5. When the air flow ratio is 1.8, the NOx production increases abruptly. It is considered that the NOx production reaction increases exponentially with temperature when the air ratio is more than 1.5 and the NOx production reaction rate increases rapidly on the right-hand side of the burner.

The Exhaust Gas Reduction of Diesel Engine by MDO (Marine Diesel Oil) Emulsion Fuel (MDO (Marine Diesel Oil) 에멀젼 연료에 의한 디젤엔진의 배출가스 저감)

  • Kim, Moon-Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.476-482
    • /
    • 2014
  • In this study, the characteristics of emulsified fuel and engine emissions were studied with engine dynamometer. Microexplosion took place in the combustion chamber. While combustion, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water content in emulsion fuel. The power also decreased according to the increment of water content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 17% moisture content, it was achieved 24% reduction in NOx production, 76% reduction in smoke density, 11% reduction of $SO_2$ and 13% reduction in power loss.

A Study on NOx Removal Efficiency using SNCR Process in the Industrial Waste Incineration Plant (산업폐기물 소각로에서 SNCR공정에 의한 NOx 제거효율에 관한 연구)

  • Ryu Hae-Yeol;Kim Min-Choul;Jung Jong-Hyeon;Lee Gang-Woo;Chung Jin-Do
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.332-339
    • /
    • 2005
  • The environmental regulations in the world has been reinforced and many nations has devoted themselves to the development of cost-effective technology. Selective catalyst reduction(SCR) and selective non-catalyst reduction (SNCR) processes are mainly used to treat nitrogen oxidants generated from fossil-fuel combustion. One of these typical technologies for reduction of do-NOx is SNCR process has increased continuously because of the low cost for building and maintenance. Nevertheless the researches on the application to real scale plant by the reductant like Urea are rarely studied. In this paper, an experimental investigations were performed on the SNCR process in the industrial waste incineration plant. With no reducing agent, the concentration of NOx stayed in around 180 ppm $(O_2\;12\%)$ with the exhausting temperature of $950^{\circ}C$ and changed within the range of 20 ppm to remain relatively consistent. When $10\;wt\%)$ of a solution was added, the efficiency of denitrification reached above $61.4\%$ with the NSR of 2.0 and the exhausting temperature of $950^{\circ}C.$ When the concentration of the urea solution was set to $10\;wt\%$ and the sprinkling to four nozzles, the reaction temperature was reduced to about $50~100^{\circ}C$ with a mixture of $10\;wt\%\;CH_3OH\;and\;5wt\%\;Na_2CO_3$ in $40\;wt\%$ of the solution. The NOx removal efficiency increased to $78.4\%,$ achieving a broader and expansive range of reaction temperatures than the addition of an unmixed pure solution.

The Effect of an Aromatic Content on Exhaust Emissions in Low Temperature Diesel Combustion (저온 디젤 연소에서 연료의 방향족 성분이 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.106-112
    • /
    • 2011
  • This study is to investigate the effect of an aromatic content in high cetane number (CN) fuels on exhaust emissions under low temperature diesel combustion, which expands the previous research about an aromatic content in low CN fuels. A 1.9L common rail direct injection diesel engine was run at 1500 rpm 2.6 bar BMEP with four fuel sets: an aromatic content of 20% (A20) or 45% (A45) with CN30, i.e. low CN fuels, and CN55, i.e. high CN fuels. Given experimental conditions, the trend of exhaust emissions in high CN fuels was inconsistent with that of low CN fuels which all produced nearly zero smoke but higher NOx for the high aromatic fuel (CN30-A45). For high CN fuels, however, the low aromatic fuel (CN55-A20) produced lower smoke than the high one (CN55-A45) while NOx was similar to each other. The cause of this discrepancy between high CN and low CN fuels is unclear whether it comes from that CN may be a dominant factor to govern exhaust emissions rather than an aromatic content or that the actual CN value of CN55-A45 is lower than CN55-A20. More decent fuel matrix should be prepared and further experiments are needed to confirm it.

Emissions and Combustion Dynamics with Fuel Injection Position for Low-swirl Nozzles of Gas Turbine Combustor (복합발전 가스터빈 연소기용 저선회 노즐의 연료 분사 위치에 따른 배기배출 및 연소진동 특성)

  • Jeongjae, Hwang;Won June, Lee;Min Kuk, Kim;Han Seok, Kim
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.37-44
    • /
    • 2022
  • In this study, two low-swirl nozzles with the same SN (Swirl Number) but different mass ratio (m) of the core part and the swirler part were designed to perform an atmospheric pressure combustion test. For each nozzle, a combustion test was conducted according to the adiabatic flame temperature, and the flame structure, emissions, and combustion instability mode were identified. Although the flame structure was significantly different, the CO emission was similar, and the NOx emission was also more related to combustion dynamics than the flame structure. Combustion dynamics and NOx emission were identified while adjusting the convection delay time by changing the position of the fuel injection nozzle. It was confirmed that when the convection delay time is in the region of (3+4n)/4T±1/4T (n=0,1,2,...), the combustion instability is strong, and in the opposite case, the combustion instability is very weak.

A Study on Characteristics of Mild Combustion using the Radiative Flamelet Model (비단열 화염편 모델을 이용한 Mild Combustor의 연소특성 해석)

  • Kim Gunhong;Kim Yongmo;Ahn Kookyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.60-67
    • /
    • 2005
  • Mild combustion or Flameless oxidation(FLOX) have been considered as one of the most prospective clean-combustion technologies to meet both the targets of high process efficiency and low pollutant emissions. A mild combustor with high air preheating and strong internal exhaust gas recirculation is characterized by relatively low flame temperature, low NOx emissions, no visible flame and no sound. In this study, the Steady Flamelet Approach has been applied to numerically analyze the combustion processes and NOx formation in the mild combustor. The detailed discussion has been made f3r the basic characteristics of mild combustor, numerical results and limitation of the present combustion modeling.