• Title/Summary/Keyword: love waves

Search Result 29, Processing Time 0.02 seconds

Shear waves propagation in an initially stressed piezoelectric layer imperfectly bonded over a micropolar elastic half space

  • Kumar, Rajneesh;Singh, Kulwinder;Pathania, D.S.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.121-129
    • /
    • 2019
  • The present study investigates the propagation of shear waves in a composite structure comprised of imperfectly bonded piezoelectric layer with a micropolar half space. Piezoelectric layer is considered to be initially stressed. Micropolar theory of elasticity has been employed which is most suitable to explain the size effects on small length scale. The general dispersion equations for the existence of waves in the coupled structure are obtained analytically in the closed form. Some particular cases have been discussed and in one particular case the dispersion relation is in well agreement to the classical-Love wave equation. The effects of various parameters viz. initial stress, interfacial imperfection and micropolarity on the phase velocity are obtained for electrically open and mechanically free system. Numerical computations are carried out and results are depicted graphically to illustrate the utility of the problem. The phase velocity of the shear waves is found to be influenced by initial stress, interface imperfection and the presence of micropolarity in the elastic half space. The theoretical results obtained are useful for the design of high performance surface acoustic devices.

Evaluation of Stiffness Profile for a Subgrade Cross-Section by the CAP(Common-Array-Profiling)-SASW Technique (CAP SASW 기법에 의한 지반단면의 전단강성구조 평가)

  • Joh Sung-Ho;Jang Dae-Woo;Kang Tae-Ho;Lee Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.71-81
    • /
    • 2005
  • Surface wave techniques were initially based on 2-D plane waves and were later improved to the techniques based the 3-D based cylindrical waves. However, body-wave interference, near-field effect and limited technology in surface wave measurements restricted the use of 3-D cylindrical waves to the 1-D evaluation of subgrade stiffness. In this study, by the numerical simulation of SASW measurements, the dispersion properties of surface waves including vertical, horizontal Rayleigh waves and Love waves were thoroughly investigated in the 3-D domain, and a new filter criteria to minimize the near-field effect was established, which led to CAP (common-array-profiling)-SASW technique. The CAP-SASW technique enabled the evaluation of subgrade stiffness fur a specific subgrade segment, not for a whole section of measurement array. Therefore, a contour plot of subgrade stiffness with a ground-truth quality can be obtained by the CAP-SASW technique. The procedure proposed in this study was verified by comparing the shear-wave velocity profiles with the shear-wave velocity profiles of downhole testing at two geotechnical sites.

Torsional waves in fluid saturated porous layer clamped between two anisotropic media

  • Gupta, Shishir;Kundu, Santimoy;Pati, Prasenjit;Ahmed, Mostaid
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.645-657
    • /
    • 2018
  • The paper aims to analyze the behaviour of torsional type surface waves propagating through fluid saturated inhomogeneous porous media clamped between two inhomogeneous anisotropic media. We considered three types of inhomogeneities in upper anisotropic layer which varies exponentially, quadratically and hyperbolically with depth. The anisotropic half space inhomogeneity varies linearly with depth and intermediate layer is taken as inhomogeneous fluid saturated porous media with sinusoidal variation. Following Biot, the dispersion equation has been derived in a closed form which contains Whittaker's function and its derivative, for approximate result that have been expanded asymptotically up to second term. Possible particular cases have been established which are in perfect agreement with standard results and observe that when one of the upper layer vanishes and other layer is homogeneous isotropic over a homogeneous half space, the velocity of torsional type surface waves coincides with that of classical Love type wave. Comparative study has been made to identify the effects of various dimensionless parameters viz. inhomogeneity parameters, anisotropy parameters, porosity parameter, and initial stress parameters on the torsional wave propagation by means of graphs using MATLAB. The study has its own relevance in connection with the propagation of seismic waves in the earth where fluid saturated poroelastic layer is present.

Gabor Pulse-Based Matching Pursuit Algorithm : Applications in Waveguide Damage Detection (가보 펄스 기반 정합추적 알고리즘 : 웨이브가이드 결함진단에서의 응용)

  • 선경호;홍진철;김윤영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.969-974
    • /
    • 2004
  • Although guided-waves are very efficient for long-range nondestructive damage inspection, it is not easy to extract meaningful pulses of small magnitude out of noisy signals. The ultimate goal of this research is to develop an efficient signal processing technique for the current guided-wave technology. The specific contribution of this investigation towards achieving this goal, a two-stage Gabor pulse-based matching pursuit algorithm is proposed : rough approximations with a set for predetermined parameters characterizing the Gabor pulse and fine adjustments of the parameters by optimization. The parameters estimated from the measured signal are then used to assess not only the location but also the size of a crack existing in a rod. To validate the effectiveness of the proposed method, the longitudinal wave-based damage detection in rods is considered. To estimate the crack size, Love's theory for the dispersion of longitudinal waves is employed.

  • PDF

Porous Boundaries in Virginia Woolf's The Waves: Anticipating a Digital Composition and Subjectivity

  • Takehana, Elise
    • Cross-Cultural Studies
    • /
    • v.32
    • /
    • pp.29-61
    • /
    • 2013
  • When turning to determining a subject position for the digital age, one may look beyond the invention of its technologies and instead begin with the development of its aesthetic of networked communities, nodal expression, and collaborative identity. Virginia Woolf's The Waves demonstrates this aesthetic in both form and content. In this paper, I will examine the role of collaboration in the form of interdisciplinary composition, arguing that Woolf's use of musical form and dramatic monologue and dialogue structurally secure an investment in collaborative models of expression. Digital texts taut their inherent multimodality, but such compositions are also evident in pre-digital texts. In addition, I will decipher the subject position Woolf puts forward in The Waves by looking closely at how the characters determine their own identity and existence when they are alone, when they interact with one individual, and when they congregate as a group. These are exemplified more specifically in the representations of Rhoda and Bernard as equally refusing to collaborate between a self-defined identity and a group defined identity; Bernard's channeling of Lord Byron while writing a love letter; and Woolf's use of the red carnation as a repeated image of the intertwined nature of the characters' collaborative identity and mutual dependence on one another.

Dispersion of Rayleigh Waves in the Korean Peninsula

  • Cho, Kwang-Hyun;Lee, Kie-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.231-240
    • /
    • 2006
  • The crustal structure of the Korean Peninsula was investigated by analyzing phase velocity dispersion data of Rayleigh waves. Earthquakes recorded by three component broad-band velocity seismographs during 1999-2004 in South Korea were used in this study. The fundamental mode Rayleigh waves were extracted from vertical components of seismograms by multiple filter technique and phase match filter method. Phase velocity dispersion curves of the fundamental mode signal pairs for 14 surface wave propagation paths on the great circle in the range 10 to 80 sec were computed by two-station method. Treating the shear velocity of each layer as an independent parameter, phase velocity data of Rayleigh wave were inverted. All the result models can be explained by a rather homogeneous crust of shear-wave velocity increasing from 2.8 to 3.25 km/sec from top to about 33 km depth without any distinctive crustal discontinuities and an uppermost mantle of shear-wave velocity between 4.55 and 4.67 km/sec. Our results turn out to agree well with recent study of Cho et al. (2006 b) based on the analysis of seismic background noises to recover short-period (0.5-20 sec) Rayleigh- and Love-wave group velocity dispersion characteristics.

  • PDF

Wave propagation along protein microtubule: Via strain gradient and orthotropic elastic model

  • Muhammad Taj;Mohammad Amien Khadimallah;Shahzad Ali Chattah;Ikram Ahmad;Sami Alghamdi;Muzamal Hussain;Rana Muhammad Akram Muntazir;Faisal Al-Thobiani;Muhammad Safeer;Muhammad Naeem Mohsin;Faisal Mehmood Butt;Zafer Iqbal
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.243-254
    • /
    • 2023
  • Microtubules in the cell are influenced by internal and external stimulation and play an important part in conveying protein substances and in carrying out medications to the intended targets. Waves are produced during these functions and in order to control the biological cell functions, it is important to know the wave velocities of microtubules. Owing to cylindrical shell shaped and mechanically elastic and orthotropic, cylindrical shell model based on gradient elasticity theory has been used. Wave velocities of the protein microtubule are carried out by considering Love's thin shell theory and Navier solution. Also the effect of size parameter and other variables on the results are investigated.

A Study on an Anti-ghost Television Receiving Antenna (반 고우스트 텔레비젼 수신 안테나 연구)

  • 기우황;육재임
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.2
    • /
    • pp.14-22
    • /
    • 1976
  • This research was started to develop a VHF television antenna which secures good pictures in spite of the disturbance from tile rear side. In a year of research, an antenna which front to banck ratio is gyrator than 30dB and whose side lobe level is smaller than -30dB alas been developed. This new antenna was designed log-periodically for the sake of wide frequency bandwidth which is necessary to cover all tile high channel. And it was found having characteristics of anti-interference against the disturbance wave from tole behind, and anti-ghosts from the reflected waves. Furthermore, the gain of this new antenna is reasonablly high, because of its low side lobe level. After all, the developed antenna is silpposcd to increace the service area considervably and to improve the TV receiving certainly.

  • PDF

Surface wave propagation in an initially stressed heterogeneous medium having a sandy layer and a point source

  • Manna, Santanu;Misra, J.C.;Kundu, Santimoy;Gupta, Shishir
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.169-176
    • /
    • 2018
  • An attempt has been made here to study the propagation of SH-type surface waves in an elastic medium, which is initially stressed and heterogeneous and has a point source inside the medium. The upper portion of the composite medium is a sandy layer. It is situated on an initially stressed heterogeneous half-space, whose density, rigidity and internal friction are function of depth. The analysis has been carried out by using Fourier transform and Green's function approach. The phase velocity has been investigated for several particular situations. It has been shown that the results of the study agree with those the case of Love wave propagation in a homogeneous medium in the absence of the sandy layer, when the initial stress is absent. In order to illustrate the validity of the analysis presented here, the derived analytical expression has been computed numerically, by considering an illustrative example and the variances of the concerned physical variables have been presented graphically. It is observed that the velocity of shear wave is amply influenced by the initial stress and heterogeneity parameters and the presence of the sandy layer. The study has an important bearing on investigations of different problems in the earth's interior and also in seismological studies.