• Title/Summary/Keyword: lossless data compression

Search Result 73, Processing Time 0.029 seconds

Compression of Terrain Data using Integer Wavelet Transform (IWT) and Application on Gravity Terrain Correction (정수웨이블릿변환(IWT)을 이용한 지형 자료의 압축 및 정밀 지형 효과 계산을 위한 활용 방법 고찰)

  • Chung, Hojoon;Lee, Heuisoon;Oh, Seokhoon;Park, Gyesoon;Rim, Hyoungrea
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.69-80
    • /
    • 2013
  • Terrain data is one of important basic data in various areas of Earth science. Recently, finer DEM data is available, which necessary to develop a method that deals with such huge data efficiently. This study was conducted on the lossless compression of DEM data and efficient partial reconstruction of terrain information from compressed data. In this study, we compressed the wavelet coefficients of DEM, obtained from integer wavelet transform (IWT) by entropy encoding. CDF (Cohen-Daubechies-Feauveau) 3.5 wavelet showed the best compression ratio of about 45.4% and the optimum decomposition level was 3. Results also showed that a small region of terrain could be restored from the inverse wavelet transform with a part of the wavelet coefficients that are related to such region instead of whole reconstruction. We discussed the potential applications of the terrain data compression for precise gravity terrain correction.

A Design of Hybrid Lossless Audio Coder (Hybrid 무손실 오디오 부호화기의 설계)

  • 박세형;신재호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.253-260
    • /
    • 2004
  • This paper proposes a novel algorithm for hybrid lossless audio coding, which employs an integer wavelet transform and a linear prediction model. The proposed algorithm divides the input signal into flames of a proper length, decorrelates the framed data using the integer wavelet transform and linear prediction and finally entropy-codes the frame data. In particular, the adaptive Golomb-Rice coding method used for the entropy coding selects an optimal option which gives the best compression efficiency. Since the proposed algorithm uses integer operations, it significantly improves the computation speed in comparison with an algorithm using real or floating-point operations. When the coding algorithm is implemented in hardware, the system complexity as well as the power consumption is remarkably reduced. Finally, because each frame is independently coded and is byte-aligned with respect to the frame header, it is convenient to move, search, and edit the coded, compressed data.

Region Classification and Image Based on Region-Based Prediction (RBP) Model

  • Cassio-M.Yorozuya;Yu-Liu;Masayuki-Nakajima
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.165-170
    • /
    • 1998
  • This paper presents a new prediction method RBP region-based prediction model where the context used for prediction contains regions instead of individual pixels. There is a meaningful property that RBP can partition a cartoon image into two distinctive types of regions, one containing full-color backgrounds and the other containing boundaries, edges and home-chromatic areas. With the development of computer techniques, synthetic images created with CG (computer graphics) becomes attactive. Like the demand on data compression, it is imperative to efficiently compress synthetic images such as cartoon animation generated with CG for storage of finite capacity and transmission of narrow bandwidth. This paper a lossy compression method to full-color regions and a lossless compression method to homo-chromatic and boundaries regions. Two criteria for partitioning are described, constant criterion and variable criterion. The latter criterion, in form of a linear function, gives the different threshold for classification in terms of contents of the image of interest. We carry out experiments by applying our method to a sequence of cartoon animation. We carry out experiments by applying our method to a sequence of cartoon animation. Compared with the available image compression standard MPEG-1, our method gives the superior results in both compression ratio and complexity.

  • PDF

Effective Compression Technique for Secure Transmission and Storage of GIS Digital Map (GIS 디지털 맵의 안전한 전송 및 저장을 위한 효율적인 압축 기법)

  • Jang, Bong-Joo;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.210-218
    • /
    • 2011
  • Generally, GIS digital map has been represented and transmitted by ASCII and Binary data forms. Among these forms, Binary form has been widely used in many GIS application fields for the transmission of mass map data. In this paper, we present a hierarchical compression technique of polyline and polygon components for effective storage and transmission of vector map with various degree of decision. These components are core geometric components that represent main layers in vector map. The proposed technique performs firstly the energy compaction of all polyline and polygon components in spatial domain for the lossless compression of detailed vector map and compress independently integer parts and fraction parts of 64bit floating points. From experimental results, we confirmed that the proposed technique has superior compressive performance to the conventional data compression of 7z, zip, rar and gz.

An Efficient Transmission Scheme of Aircraft Data (항공데이터의 효율적인 전송 방식)

  • Kang, Min-Woo;Ha, Seok-Wun;Moon, Yong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.62-68
    • /
    • 2012
  • In this paper, we propose an efficient transmission scheme for flight data. It is important to reduce amount of flight data transmitted effectively for timely transmission in airplane that the safety is very importantly recognized. Thus, this paper shows the improved technique transmitting after compressing flight data by the lossless compression technique. Because the proposed method improves the transmission speed of the flight data effectively. The processing of flight data and handling can be easily performed in the time to be restricted. The simulation results show that the proposed scheme achieves 25% data transfer gain compared to the ARINC 429 based transmission method.

DNA Sequences Compression using Repeat technique and Selective Encryption using modified Huffman's Technique

  • Syed Mahamud Hossein; Debashis De; Pradeep Kumar Das Mohapatra
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.85-104
    • /
    • 2024
  • The DNA (Deoxyribonucleic Acid) database size increases tremendously transmuting from millions to billions in a year. Ergo for storing, probing the DNA database requires efficient lossless compression and encryption algorithm for secure communication. The DNA short pattern repetitions are of paramount characteristics in biological sequences. This algorithm is predicated on probing exact reiterate, substring substitute by corresponding ASCII code and engender a Library file, as a result get cumulating of the data stream. In this technique the data is secured utilizing ASCII value and engendering Library file which acts as a signature. The security of information is the most challenging question with veneration to the communication perspective. The selective encryption method is used for security purpose, this technique is applied on compressed data or in the library file or in both files. The fractional part of a message is encrypted in the selective encryption method keeping the remaining part unchanged, this is very paramount with reference to selective encryption system. The Huffman's algorithm is applied in the output of the first phase reiterate technique, including transmuting the Huffman's tree level position and node position for encryption. The mass demand is the minimum storage requirement and computation cost. Time and space complexity of Repeat algorithm are O(N2) and O(N). Time and space complexity of Huffman algorithm are O(n log n) and O(n log n). The artificial data of equipollent length is additionally tested by this algorithm. This modified Huffman technique reduces the compression rate & ratio. The experimental result shows that only 58% to 100% encryption on actual file is done when above 99% modification is in actual file can be observed and compression rate is 1.97bits/base.

Performance Improvement of LZ77 Algorithm using a Strategy Table and a Genetic Algorithm (전략 테이블과 유전 알고리즘을 이용한 LZ77 알고리즘의 성능 개선)

  • Jung Soonchul;Seo Dong-Il;Moon Byung-Ro
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1628-1636
    • /
    • 2004
  • Data compression techniques have been studied for decades because they saved space and time to reduce costs. The Lempel-Ziv 77 (LZ77) is a dictionary-based, lossless compression algorithm. The dictionary size of the LZ77 algorithm is fixed, and the performance of the algorithm is highly dependent on its dictionary size. In this paper, we suggest a dynamic LZ77 algorithm that changes its dictionary size during compression, and also we suggest a genetic algorithm to evolve the dictionary-resizing strategies. The suggested algorithm outperformed the original version up to about 16%.

The Cooperative Parallel X-Match Data Compression Algorithm (협동 병렬 X-Match 데이타 압축 알고리즘)

  • 윤상균
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.10
    • /
    • pp.586-594
    • /
    • 2003
  • X-Match algorithm is a lossless compression algorithm suitable for hardware implementation owing to its simplicity. It can compress 32 bits per clock cycle and is suitable for real time compression. However, as the bus width increases 64-bit, the compression unit also need to increase. This paper proposes the cooperative parallel X-Match (X-MatchCP) algorithm, which improves the compression speed by performing the two X-Match algorithms in parallel. It searches the all dictionary for two words, combines the compression codes of two words generated by parallel X-Match compression and outputs the combined code while the previous parallel X-Match algorithm searches an individual dictionary. The compression ratio in X-MatchCP is almost the same as in X-Match. X-MatchCP algorithm is described and simulated by Verilog hardware description language.

53.1 Low power and low EMI display technologies based on the total image systematic approach

  • Okumura, Haruhiko;Baba, Masahiro;Takagi, Ayako;Sasaki, Hisashi;Matsuba, Mitsunori
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1081-1085
    • /
    • 2009
  • We have already developed EMI reducing techniques using lossless compression by vertically differential EMI suppression method (VDE[1]). It applies lossless modulo reduction and data bit mapping optimization for low voltage differential signaling (LVDS) transmission lines, that reduces the probability of transient bit and EMI by 12 dB [6][7]. We also improved and optimized the VDE for low power LCD interface. With this modified VDE algorithm[8], the developed FPGA was measured the reduction of the power consumption of LCD circuit by more than 15 % compared to the conventional methods in the case of 14-in LCD with SXGA resolution. The VDE algorithm is based on the total image systematic approach. In the VDE method, the present image signals are subtracted for the 1H delayed image signals and transferred to a column driver through a PCB. As the vertical correlations for image signals are very high, we expected that most of the vertically subtracted image signals remain 0 level and transient cycles become very long. As a result, the power consumption and EMI are extremely reduced for the transferred image signals on a PCB. In this paper, we discussed our proposed method by emphasizing the fact that systematic approach are important based on not only display point of view but also total system point of view.

  • PDF

Near-lossless Coding of Multiview Texture and Depth Information for Graphics Applications (그래픽스 응용을 위한 다시점 텍스처 및 깊이 정보의 근접 무손실 부호화)

  • Yoon, Seung-Uk;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • This Paper introduces representation and coding schemes of multiview texture and depth data for complex three-dimensional scenes. We represent input color and depth images using compressed texture and depth map pairs. The proposed X-codec encodes them further to increase compression ratio in a near-lossless way. Our system resolves two problems. First, rendering time and output visual quality depend on input image resolutions rather than scene complexity since a depth image-based rendering techniques is used. Second, the random access problem of conventional image-based rendering could be effectively solved using our image block-based compression schemes. From experimental results, the proposed approach is useful to graphics applications because it provides multiview rendering, selective decoding, and scene manipulation functionalities.