• Title/Summary/Keyword: loss coefficient

Search Result 1,204, Processing Time 0.025 seconds

3-D Numerical Experiment for Estimation of Equivalent Resistance Coefficient due to Multi-piers : Effect of Transverse Intervals (상당저항계수식 산정을 위한 3차원 수치실험 : 횡방향 이격거리의 영향)

  • Kim, Hyeong-Seok;Choi, Jun-Woo;Ko, Kwang-Oh;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.3
    • /
    • pp.216-223
    • /
    • 2009
  • A transverse drag interaction coefficient of the equivalent resistance coefficient formula for square multi-piers higher than water depth and arranged with equal intervals was studied. From the assumption that the energy loss due to drag interaction according to transverse intervals of resistance bodies is essentially identical to the energy loss due to thick orifice according to porosities, the transverse drag interaction coefficient was derived by employing the orifice's energy loss coefficient. The equivalent resistance coefficient formula including the drag interaction coefficient was compared with the numerical experiments using FLOW-3D, the performance of which was verified by Kim et al.(2008) in the experimental condition with the multi-piers. The comparisons showed good agreement and thus, the equivalent resistance coefficient formula, which does not only consider frictional resistance but also consider the multi-piers' drag resistance varied according to the intervals in longitudinal or transverse direction, was verified.

Development of head loss coefficient formula at surcharged four-way combining square manhole with variation of inlet flow (유입유량 변화를 고려한 과부하 4방향 사각형 합류맨홀에서의 손실계수 산정식 개발)

  • Jo, Jun Beom;Kim, Jung Soo;Yoon, Sei Eui
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.12
    • /
    • pp.877-887
    • /
    • 2017
  • The energy losses due to surcharged flow at four-way combining manhole, which is mainly installed in the downstream of urban sewer system, is the main cause of inundation in urban area. Surcharged four-way combining manholes form various flow configuration such as straight through, T-type, and four-way manholes depending on variation of inflow discharge in inlet pipes. Therefore, it is necessary to analyze change of energy loss and estimate head loss coefficients at surcharged four-way combining manhole with variation of inflow discharge ratio. The hydraulic experimental apparatus which can change inflow ratios were installed to analyze the flow characteristics at four-way combining manhole. In this study, to calculate the head loss coefficient according to change of the inflow discharge ratios at the surcharged four-way combining square manhole, the discharge conditions of 40 cases which the inflow ratios of each inlet pipe were changed by 10% interval was selected. The head loss coefficient at surcharged square manhole showed the lowest value of 0.40 at the straight manhole and the highest value of 1.58 at the $90^{\circ}$ junction manhole. In the combining manholes (T-type and four-way), the head loss coefficients were calculated more higher as the lateral flow rate was biased. The contour map of head loss coefficient range was constructed by using the estimated head loss coefficients and the empirical formula of head loss coefficients was derived to consider the variation of inflow discharge ratios at the surcharged square manhole. The empirical formula could be applied to the design and assessment of the urban drainage system.

Evaluation of Loss Coefficient of a Butterfly Valve with Valve Closed Angles (밸브 닫힘각 변화에 따른 버터플라이밸브의 손실계수 평가)

  • Lee, Jee-Keun;Rho, Byung-Joon;Choi, Hee-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • In this study, flow characteristics of a small-sized butterfly valve with the valve disk diameter of 25.4 mm have been investigated experimentally for the valve closed angles. In order to examine the flow characteristics of the butterfly valve, loss coefficient (Kv) was obtained at the valve closed angles of 0$^{\circ}$, 5$^{\circ}$, 10$^{\circ}$, 20$^{\circ}$ and 30$^{\circ}$. In addition, the effects of the valve disk edge shape were examined. As the result of the experiment, the maximum loss coefficient (Kvmax) was decreased with the increase of the valve closed angle, and it had the maximum decrease ratio at the valve disk angles of 0$^{\circ}$~5$^{\circ}$. The valve disk edge shape have an effect on the loss coefficient of the valve around the small valve closed angle.

A Study on Characteristics Analysis about Pressure Loss Coefficient for Inflator Filter (인플레이터 필터에 대한 압력손실계수 특성해석 연구)

  • Yoo, Il-Hoon;Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5696-5703
    • /
    • 2012
  • In this study, the characteristics of filter that make up the automotive airbag system were analyzed. The gas pressure change of airbag is directly impacted by the filter. However, it is uncertain how much the design factors of filter affect the pressure of airbag. And it is difficult to access the pressure loss coefficient in the respect of characteristics of the airbag filter in the simulation method. To solve this problem, this study suggests pressure loss coefficient of the filter using simulation analysis. But it is impossible to interpret a sudden increase of pressure such as airbag filter. To solve this problem, by applying interpolation and scale down method, analysis was processed. Also, through the simulation interpretation of airbag filter's pressure loss coefficient, the guidelines for the filter design could be suggested.

Pressure loss coefficient measurements of pyrostarter filters (파이로스타터용 필터 압력손실계수 측정)

  • Hong, Moon-Geun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.126-133
    • /
    • 2007
  • An experimental apparatus has been designed and prepared in order to measure a pressure loss coefficient of hydropneumatic components, which is an important parameter in a hydropneumatic system Blow-down system has been adopted for the experimental apparatu to meet the high flow energy requirement as well as the apparatus safety. Especially, pressure loss coefficient measurements of pyrostarter filters have been performed and the pressure loss coefficient, K of CQSF has been experimentally acquired. Then it is shown that the turbine inlet pressure $p_2$, which is predicted from the measured K, is in accord with the results of combustion tests. Moreover, the relation between K and combustion pressure $p_0$ has been presented and it is disclosed that the relation accords well with the results of combustion tests. It is anticipated that K of a filter could play a role in PS size reduction by rising up the combustion pressure resulting in increasing the burning rate of solid propellant.

  • PDF

Effect of Graphite Intercalation Compound on the Sound Absorption Coefficient and Sound Transmission Loss of Epoxy Composites (그라파이트 인터칼레이션 컴파운드가 에폭시 복합재료의 흡·차음성에 미치는 영향)

  • Lee, Byung-Chan;Park, Gyu-Dae;Choi, Sung-Kyu;Kim, Sung-Ryong
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.389-394
    • /
    • 2015
  • The sound absorption coefficient and sound transmission loss of graphite intercalation compound (GIC) included epoxy composites were investigated. Epoxy resin was infused into the expanded GIC and the impedance tube method was employed to measure the sound absorption coefficient and sound transmission loss. Scanning electron microscopy photographs showed uniform distribution of the GIC in the epoxy matrix. The surface density of epoxy/GIC (20 wt%) composites decreased about 56% compared to that of pure epoxy. The sound absorption coefficient of composites increased about 3 times at the frequency range of 500~1000 Hz compared to the pure epoxy. The sound transmission loss of composites decreased with increasing the GIC content and it is attributed to the increase of pores in the composites.

Numerical Study of Channel Area Effects on the Performance Characteristics of Regenerative Type Fuel Pump (재생형 연료펌프의 채널 면적 변화가 성능 특성에 미치는 영향에 대한 수치해석적 연구)

  • Lee, Kyoung-Yong;Choi, Young-Seok;Son, Kwang-Eun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.41-45
    • /
    • 2007
  • The effects of channel area on the performance of regenerative type fuel pump were numerically studied by commercial CFD code (ANSYS CFX-10). To examine the effects of channel area, the shapes of the side channel and blade were simplified. The channel area affected the flow characteristics of the internal recirculation flow between the side channel and the blade groove and also made a difference in the overall performance. These loss mechanism with circulation flow were adopted as a loss coefficient in the performance prediction program. The loss coefficient was newly derived from the results of calculations with different channel area, and compared with the experimental results in the reference paper and used to modify the performance prediction program. The circulation flow characteristics with different channel area, which is related with loss mechanism, were also discussed with the results of 3-dimensional flow calculations.

A Novel Algorithm of Joint Probability Data Association Based on Loss Function

  • Jiao, Hao;Liu, Yunxue;Yu, Hui;Li, Ke;Long, Feiyuan;Cui, Yingjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2339-2355
    • /
    • 2021
  • In this paper, a joint probabilistic data association algorithm based on loss function (LJPDA) is proposed so that the computation load and accuracy of the multi-target tracking algorithm can be guaranteed simultaneously. Firstly, data association is divided in to three cases based on the relationship among validation gates and the number of measurements in the overlapping area for validation gates. Also the contribution coefficient is employed for evaluating the contribution of a measurement to a target, and the loss function, which reflects the cost of the new proposed data association algorithm, is defined. Moreover, the equation set of optimal contribution coefficient is given by minimizing the loss function, and the optimal contribution coefficient can be attained by using the Newton-Raphson method. In this way, the weighted value of each target can be achieved, and the data association among measurements and tracks can be realized. Finally, we compare performances of LJPDA proposed and joint probabilistic data association (JPDA) algorithm via numerical simulations, and much attention is paid on real-time performance and estimation error. Theoretical analysis and experimental results reveal that the LJPDA algorithm proposed exhibits small estimation error and low computation complexity.

Loss Analysis by Impeller Blade Angle in the S-Curve Region of Low Specific Speed Pump Turbine

  • Ujjwal Shrestha;Young-Do Choi
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.35-43
    • /
    • 2024
  • A pump turbine is a technically matured option for energy production and storage systems. At the off-design operating range, the pump turbine succumbed to flow instabilities, which correlated with the pump turbine geometry. A low specific speed pump turbine was designed and modified according to the impeller blade angle. Reynolds-Average Navier-Stokes is carried out with a shear stress transport turbulence model to evaluate the detailed flow characteristics in the pump turbine. The impeller blade inlet angle (𝛽1) and outlet angle (𝛽2) are used to evaluate hydraulic loss in the pump turbine. When 𝛽1 changed from low to high value, the maximum efficiency is increased by 4.75% in turbine mode. The S-Curve inclination is reduced by 8% and 42% for changes in 𝛽1 and 𝛽2 from low to high values, respectively. At α = 21°, the shock loss coefficient (𝜁s) is reduced by 16% and 19% with increases of 𝛽1 and 𝛽2 from low to high values, respectively. When 𝛽1 and 𝛽2 values increased from low to high, the impeller friction coefficient (𝜁f) increased and decreased by 20% and 8%, respectively. Hence, the high 𝛽2 effectively reduced the loss coefficient and S-Curve inclination.

Quantitative Evaluation for Improvement Effects of Performance After Mechanical Rehabilitation Treatments on Agricultural Groundwater Well (농업용 관정의 기계적 처리 이후 성능 개선 효과의 정량적 평가 사례)

  • Song, Sung-Ho;Lee, Byung-Sun;An, Jung-Gi
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.42-49
    • /
    • 2016
  • Step-drawdown pumping tests for identifying the improvement of groundwater well performance after rehabilitation treatments were conducted in three longstanding wells. Three selective mechanical treatment methods including power bubble, high-voltage electric pulse, and air surging were applied to these wells and the applicability of these methods to secure additional groundwater resources were evaluated quantitatively. Commonly, drawdown at final stage of stepdrawdown pumping tests after rehabilitation decreased by as much as 0.61~0.70 meters compared to those before rehabilitation. In addition, final specific drawdown values of three wells increased from 9% to 14% after rehabilitation. Formation loss coefficient and well loss coefficient decreased to 6.1% and 60.6%, respectively, indicating some clogging materials by precipitation/corrosion/microbe within pores of aquifer materials, gravel packs, and screens were effectively removed by applied methods. Decrease of formation loss coefficient was higher in the well applied by the power bubble method meanwhile high-voltage electric pulse method demonstrated the higher decrease of well loss coefficient. Additionally secured groundwater amounts after rehabilitation ranged from 23.3 to 32.1 m3/day, which account for 8~16% of initially developed pumping rates of the wells. From the results of this study, the effective selection of rehabilitation treatments considering aquifer characteristics are expected to contribute to secure groundwater resources for irrigation as well as to plan systematic management program for groundwater resources in rural area.