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Abstract 

 
In this paper, a joint probabilistic data association algorithm based on loss function (LJPDA) 
is proposed so that the computation load and accuracy of the multi-target tracking algorithm 
can be guaranteed simultaneously. Firstly, data association is divided in to three cases based 
on the relationship among validation gates and the number of measurements in the overlapping 
area for validation gates. Also the contribution coefficient is employed for evaluating the 
contribution of a measurement to a target, and the loss function, which reflects the cost of the 
new proposed data association algorithm, is defined. Moreover, the equation set of optimal 
contribution coefficient is given by minimizing the loss function, and the optimal contribution 
coefficient can be attained by using the Newton-Raphson method. In this way, the weighted 
value of each target can be achieved, and the data association among measurements and tracks 
can be realized. Finally, we compare performances of LJPDA proposed and joint probabilistic 
data association (JPDA) algorithm via numerical simulations, and much attention is paid on 
real-time performance and estimation error. Theoretical analysis and experimental results 
reveal that the LJPDA algorithm proposed exhibits small estimation error and low computation 
complexity. 
 
Keywords: Multi-target tracking, Data association, Loss function, Joint probability, 
Association probability. 
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1. Introduction 

Radar data processing is widely used in data association, smoothing, filtering, and prediction 
of the measured data, and estimation for the parameters of targets [1,2]. In this way, stable 
tracks can be attained. 

There are mainly two basic methods of radar data association for multiple target tracking, 
the method based on the maximum likelihood principle, and the method based on the Bayes 
criterion [3-7]. The former shows huge computation burden and is not easy to implement [8]. 
The latter includes nearest neighbor data association (NNDA), probabilistic data association 
(PDA), multiple hypothesis tracking (MHT) and joint probabilistic data association (JPDA) 
algorithm [9, 10]. NNDA is not appropriate for environments with severe clutters or multiple 
targets [11,12], and PDA is only suitable for single-target and sparse multi-target environments 
[13]. MHT assumes that each new measurement may come from an existing target, a new 
target or a clutter, and achieve multi-target tracking by hypothesis evaluation, deletion and 
merging [14]. MHT is seldom adopted since it depends too much on a prior information of 
targets and clutters. Although JPDA exhibits good performance for multi-target tracking, but 
it is difficult to implement due to the reason as following: on the one hand, JPDA is very 
sophisticated and has huge computation burden for single target case; on the other hand, 
computation load increases rapidly and explosively when the number of tracking targets 
increases [15,16]. Therefore, JPDA is not easy to implement in practical engineering [1,17]. 
In this paper, we consider the distribution of measurements in validation gates, and combine 
the Bayesian criterion with the correlation characteristics between validation gates, and 
introduce loss (cost) function to calculate the joint probability between the measurement and 
the target. In this way, a multi-target joint probabilistic data association algorithm based on 
loss function (LJPDA) is proposed. The effectiveness and timeliness of the proposed algorithm 
are verified by simulation. 

2. LJPDA algorithm 
In the case of multiple targets or clutters, there are likely to be multiple measurements that fall 
into validation gates of the target. These measurements are referred to as valid measurements 
[1,2]. The basic of joint probability is that each valid measurement may come from the tracked 
target, and different valid measurement has different probability from the tracked target. So, 
each valid measurement in a validation gate can make a contribution to update of the associated 
target. In our study, we adopt a contribution efficient to depict the contribution of a valid 
measurement on the associated target. Then we define Loss function based on estimation error 
for evaluating the cost of a data association algorithm. Further, we derive the loss function 
relevant to contribution efficient in different cases, and find the optimal contribution efficient 
by minimizing the loss function. Finally, states can be updated by using the optimal 
contribution efficient. 

2.1 Loss function 
JPDA statistically computes the impact of each valid measurement on state estimation. 
However, in LJPDA proposed, we define a loss function tightly related to estimation error, 
and consider the contribution of each valid measurement on the associated target. Then, we 
give the expression of loss function, and attain the optimal contribution efficient. 
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The filter residual (Innovation) for a tracking filter can be written as 
 ( ) ( ) ( | 1)V k Z k HX k k= − −  (1) 

where Z(k) is the measurement vector, H is the measurement matrix, and X(k|k-1) is the 
prediction matrix of the state at time k given k-1 updates. 

The innovation of the target t being associated with the measurement j can be expressed as 
( ) ( ) ( | 1)jt j tU k Z k HX k k= − −  

The likelihood function Pjt [1] of the measurement j being associated with the target t is 
given by 

 ' 1
1/2

1 1exp{ ( ) ( ) ( )}
| 2 ( ) | 2jt jt t jt

t

P U k k U k
S kπ

−= − S  (2) 

where St(k) is often named as the innovation covariance matrix of target t. 
We define βjt as the association probability of the target t being associated with the 

measurement j. The two powers of Mahalanobis distance is defined as the loss function. 
2 1
jt jt t jtd U S U−′=  

where 2
jtd  is the two powers of the Mahalanobis distance between the measurement j and the 

target t. 
Therefore, the association loss of target t is defined as 

1( ) ( ) ( ) ( )t tC k S k −′= − −% %x x x x  
where x is the true value, x% is the estimated value, and St is the sample covariance matrix. 

2.2 Classification 
On the basis of the relationship among validation gates and the number of measurements in 
the overlapping area for validation gates, a data association algorithm is divided into three 
cases as follows. 

2.2.1 Case 1 
As shown in Fig. 1, there is no overlap in the validation gates or no measurement in the 
overlapping area. 
 

Validation gate 
of target 1

Validation gate 
of target 2

Measurement 1

Measurement 2

Measurement 3

Measurement 4

Validation gate 
of target 3  

Fig. 1. No measurement in the overlapping area or no overlapping area. 
 

In this case, the multi-target data association problem can be considered as the single-
objective data association problem, and the PDA algorithm can be used for data association 
[2]. The combined innovation Vt(k) of the target t is given by 
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where

1
+

jt
jt m

it
i

P

P B
β

=

=

∑
is the association probability, m is the number of valid measurements in 

the validation gate of the target t, N is the number of targets, B = λ|2πS(k)| 1/2(1-PDPG)/PG is a 
constant that depends on the clutter density [1], λ is the spatial density of false measurements, 
PD is the target detection probability, and PG is the gate probability which is the probability of 
a real target existing in the validation gate. 

2.2.2 Case 2 
As illustrated in Fig. 2, there is only one measurement in validation gates of the target that 
falls in the overlapping area. 

Measurement 1

Validation 
gate of target 2

Validation 
gate of target 1

 
 Fig. 2. Only one measurement in validation gates and the measurement falling in the overlapping 

area 
 

In Fig. 2, there is only one measurement (the measurement 1) in the validation gates for 
the target 1 and target 2, and the measurement 1 falls in the overlapping area. In this case, there 
are four kinds of possibilities as following: 

I. The measurement 1 only comes from the target 1, its detection probability can be 
expressed as P1=PD1(1-PD2). 

II. The measurement 1 is only from the target 2, its detection probability can be written into 
P2=PD2(1-PD1). 

III. The measurement 1 comes from both the target 1 and target 2, its detection probability 
is P3=PD1PD2. 

IV. The measurement 1 is from false alarms, its detection probability can be expressed as 
P4=(1-PD1)(1-PD2). 
where PDi is the detection probability of the target i, and P1 + P2 + P3 + P4 = 1. 

Data association is used to establish a relationship between measurements and targets [18-
20]. If the assumption in which the measurement is only from the target 1 holds, then the four 
situations mentioned above are real, and losses of data association (loss function of data 
association) can be generated in the following. 

When I is the real situation, there is no association error. Loss of data association is CІ = 0. 
If the real situation is Ⅱ, the association of target 1 and 2 are both wrong. Loss of data 
association is 2 2

11 12C d d= +Ⅱ
. 

If Ⅲ holds, the association of target 2 is wrong. Loss of data association is 2
12C d=Ⅲ

. 
When the real situation is Ⅳ, the association of target 1 is wrong. Loss of data association 

is 2
11C d=Ⅳ

. 

where 
2 1

1 1 1i i i id U S U−′=  is the two powers of the Mahalanobis distance between the measurement 
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and the target i. 
Therefore, the average loss function in the case I is given by 

10 1 2 3 4
2 2 2 2

2 11 12 3 12 4 11
2 2

1 11 2 12

= ( )
(1 )D D

C PC P C PC P C
P d d P d P d

P d P d

= + + +

+ + +

= − +

Ⅰ Ⅱ Ⅲ Ⅳ

. 

Similarly, the average association loss in Ⅱ-Ⅳ are given as follows 
2 2

01 1 11 2 12(1 )= + −D DC P d P d
, 

2 2
11 1 11 2 12(1 ) (1 )= − + −D DC P d P d

, 
2 2

00 1 11 2 12= +D DC P d P d
. 

where Cij is the average loss function, i = 1 represents the measurement 1 is associated with 
the target 1, and j = 1 indicates the measurement 1 is associated with the target 2. 

In the case 2, the measurement should not be associated with multiple targets, otherwise it 
will cause trajectory overlap [21]. Consequently, we need not to consider the situation, in 
which a measurement is from multiple targets, and the algorithm can be simplified and 
extended to situations where multiple validation gates are overlapping. 

We suppose that there are m overlapping gates, and only one measurement in validation 
gates falls in the overlapping area. We further assume events in which a measurement comes 
from the target i (i=1, 2, …, m) are independent, and probability of the event i is PDi (i=1, 2, 
…, m). When the measurement is associated with the target n, the average association loss Cn 
is given by 

 

2 2 2 2
1 11 2 12 1 1

2 2
1 1

1

(1 )

=(1 2 )                1, 2, ,

n D D Dn n Dm m
m

Dn n Di i
i

C P d P d P d P d

P d P d n m
=

= + + + − + +

− + =∑

L L

L
     (5) 

If the measurement is regarded as clutter, the average loss function can be written into 

 2
0 1

1
=

m

Di i
i

C P d
=
∑  (6) 

Then the optimal association target for the measurement is given in the following by 
minimized the average loss function 

0 arg min{ ,1 }n
n

k C n m= ≤ ≤
 

According to (5), the above formula can be simplified as 
2

0 1arg min{(1 2 ) ,1 }Dn n
n

k P d n m= − ≤ ≤
 

The combined innovation Vt(k) of the target t is given by 

 1 0( )      
( )

0              
t

t

U k t t
V k

else
=

= 


 (7) 

2.2.3 Case 3 
As shown in Fig. 3, the case 3 denotes all the possibilities except for case 1 and case 2. In this 
case, there are at least one measurement in the overlapping area, and there are multiple 
measurements in the validation gates. 
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Validation gate 
of target 1

Validation gate 
of target 2

Validation gate 
of target 3Measurement 1

Measurement 2

Measurement 3

Measurement 4

Measurement 5

Measurement 6

 
Fig. 3. At least one measurement in the overlapping area and multiple measurements in the 

validation gates 
 

1.Contribution coefficient 
On the basis of the idea of joint probability, the measurement in the overlapping area can 

affect state update of all targets in the same area. We define λit (0 ≤ λit ≤ 1) as the contribution 
coefficient of the measurement i being associated with target t, the larger λit is, the greater the 
impact of the measurement i on the associated with target t is. Taking Fig.3 as an example, the 
measurement 2 affects the data association of the target 1 and the target 2, and its contribution 
coefficients are λ21 and λ22 (λ21 + λ22 = 1), respectively. Similarly, the measurement 3 plays 
impact on the association of the target 1 and the target 2, and its contribution coefficients are 
respectively λ31 and λ32. In this way, the association loss function of data association is a 
function of the contribution coefficient, and the optimal contribution coefficient can be 
attained if the average loss function is minimized. 
2. Formulation 

If only the measurement 2 is considered, contribution coefficients of the measurement 3 
are determined. Similar to the PDA algorithm [2], the association probability of the 
measurement 2 being associated with the target 1 is given when the measurement 2 is really 
from target 1. 

21 21 11 21 31 31= / ( )β λ′ + + +P P P P B , 
where 

ijβ ′  is called the real association probability. 
If the measurement 2 is not from the target 1, the real association probability of the 

measurement 2 being associated with the target 1 is 21=0β ′ . 
Similarly, when the measurement 2 comes from the target 2, the real association probability 

of the measurement 2 being associated with the target 2 is given by 

22 22 22 32 32 42 52 52= / ( )β λ λ′ + + + +P P P P P B . 
If the measurement 2 is not from the target 2, the real association probability of the 

measurement 2 being associated with the target 2 is 22 =0β ′ . 
In engineering practice, we do not know which target a measurement is from. Therefore, 

the association probability for the situation in which the measurement 2 is associated with 
targets 1 and 2 are given as follows 

21 21 21 11 21 21 31 31= / ( )β λ λ λ′′ + + +P P P P B  
22 22 22 22 22 32 32 42 52 52= / ( )β λ λ λ λ′′ + + + +P P P P P B . 
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where
ijβ ′′  is called the practical association probability, and Pij and B can refer to (4). 

Considering the impact of contribution coefficient when the measurement i is associated 
with the target j, the association loss is given by 

 2 2( )A
ij ij ij ijC dβ β′′ ′= −  (8) 

When the measurement 2 is only comes from the target 1, the detection probability of a 
target is PA=PD1(1-PD2) and the real association probability is 22 0β ′ = . In this case, the loss 
function can be written into 

2 2 2 2
21 21 21 22 22 22

2 2 2 2
21 21 21 22 22

( ) ( )
( )

AC d d
d d

β β β β

β β β

′′ ′ ′′ ′= − + −

′′ ′ ′′= − +
. 

Similarly, if the measurement 2 only comes from the target 2, detection probability is 
PB=PD2(1-PD1), and the association loss can be expressed as  

2 2 2 2
21 21 21 22 22 22
2 2 2 2

21 21 22 22 22

( ) ( )
( )

BC d d
d d

β β β β

β β β

′′ ′ ′′ ′= − + −

′′ ′′ ′= + −
. 

If the measurement 2 is from the target 1 and the target 2, detection probability is 
Pc=PD1PD2, and the association loss is given by 

2 2 2 2
21 21 21 22 22 22( ) ( )β β β β′′ ′ ′′ ′= − + −CC d d . 

When the measurement 2 is from false alarm, detection probability is (1-PD1)(1-PD2), and 
the association loss can be written into 

2 2 2 2
21 21 21 22 22 22
2 2 2 2

21 21 22 22

( ) ( )β β β β

β β

′′ ′ ′′ ′= − + −

′′ ′′= +
DC d d

d d . 
Therefore, the average loss function of data association for the measurement 2 is given by 

 

2 2 2 2
2 21 21 21 22 22

2 2 2 2
21 21 22 22 22

2 2 2 2
21 21 21 22 22 22

2 2 2 2
1 2 21 21 22 22

2 2 2 2 2
1 21 21 21 21 1 21 21 21

2
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C
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D
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P d d P d
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β β β
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β β β β

β β

β β β β

β

′′ ′ ′′− +

′′ ′′ ′+ + −

′′ ′ ′′ ′+ − + −

′′ ′′+ − − +

′ ′′ ′ ′′−

′+ 2 2 2 2
22 22 2 22 22 22+ 2 Dd P dβ β β′′ ′ ′′−

 (9) 

where PD1 and PD2 are the detection probabilities of the target 1 and the target 2. 
It can be seen from (9) that the average loss function of data association D2 is a function of 

contribution coefficients. The optimal contribution coefficients can be obtained by minimizing 
D2. Taking partial derivative of λ21 on both side of D2 and letting results be zero, we obtain 

2 2 2 2 2 3 2
2 1 21 21 21 1 21 21 21 21 21 21 21

21 21
2 2 2 2 2 3 2

2 22 22 22 2 22 22 22 22 22 22 22

22

2 2 2 2

2 2 2 2

D D

D D

D P d P d d d

P d P d d d

β β β β β β
λ λ

β β β β β β
λ

′ ′′ ′ ′′ ′′ ′′∂ − + + −
=

∂

′ ′′ ′ ′′ ′′ ′′− − +
+

 
The equation set for the optimal contribution coefficients can be attained 
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2 2 2 2 2 3 2
1 21 21 21 1 21 21 21 21 21 21 21 22

21 2 2 2 2 2 3 2
2 22 22 22 2 22 22 22 22 22 22 22

22 21

( )=
( )
1

D D

D D

P d P d d d
P d P d d d
β β β β β β λλ
β β β β β β

λ λ

′ ′′ ′ ′′ ′′ ′′ − − +
 ′ ′′ ′ ′′ ′′ ′′− − +
 = −

 (10) 

Equation (10) can be extended to situations in which multiple measurements appear in the 
overlapping area of multiple validation gates. We assume that the number of measurements is 
T, the number of validation gates is M, and the events in which the measurement i is from the 
target j (j=1, 2, …, M) are independent (occurrence probability of the event is PDj). The average 
loss function of data association for the situation in which the measurement i is associated with 
the target j is given by 

 
2 2 2 2

2 2 2 2 2

( ) (1 )( )

+ 2
ij Dj ij ij ij Dj ij ij

Dj ij ij ij ij Dj ij ij ij

C P d P d

P d d P d

β β β

β β β β

′′ ′ ′′= − + −

′ ′′ ′ ′′= −
.  (11) 

The average loss function of data association for the measurement i by adopting the 
contribution coefficient can be given by 

 
1

2 2 2 2 2

1
( + 2 )

M

i ij
j

M

Dj ij ij ij ij Dj ij ij ij
j

D C

P d d P dβ β β β

=

=

=

′ ′′ ′ ′′= −

∑

∑
. (12) 

Using Lagrange Multiplier Method, the modified function F is obtained. 

 
1

2 2 2 2 2

1 1

( 1)

( + 2 ) ( 1)

M

i ij
j

M M

Dj ij ij ij ij Dj ij ij ij ij
j j

F D a

P d d P d a

λ

β β β β λ

=

= =

= + −

′ ′′ ′ ′′= − + −

∑

∑ ∑
 (13) 

where a is the undetermined coefficient. 
Taking partial derivative of λjt on both side of (13) and letting results be zero, we obtain 

 
2( )(1 )

2 Dt jt jt jt jt jt

jt jt

P dF a
β β β β

λ λ
′ ′′ ′′ ′′− −∂

= − +
∂

 (14) 

where PDt is the detection probability of the target t, 2
jtd  denotes the two powers of the 

Mahalanobis distance between the measurement j and the target t. Additionally, jtβ ′  and jtβ ′′  are 
the real association probability and the practical association probability when the measurement 
j comes from the target t. Can be given as 

 1

1

/ ( )
   

/ ( )

T

jt jt it it jt jt jt
i

T

jt jt jt it it
i

P P P P B

P P B

β λ λ

β λ λ

=

=

 ′ = − + +

 ′′ = +


∑

∑
 (15) 

It follows from (14) that  
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=


= = = =



 =

∑

L
 (16) 

where 2( )(1 )jt Dt jt jt jt jt jtD P dβ β β β′ ′′ ′′ ′′= − − , and M is the number of validation gates where the 
measurement j is located. 

If the solution of (16) does not exist in the domain of definition λit (0 ≤ λit ≤ 1), the minimum 
value of contribution coefficient for the modified function F is on a one-dimensional or 
multidimensional boundary. In this case, we let the contribution coefficient of this dimension 
equal to zero. Then we solve the equation set in (15). In addition, the measurement in a non-
overlapping area completely contributes to the corresponding target t. i.e. λjt = 1. 

Newton-Raphson method (tangents method) [22] is adopted for solving (16), and the 
nonlinear equation set can be approximated as linear equation set for iterative solution. 
Therefore, equation (16) can be approximated to (17). 
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1
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①

②

③

④

⑤

1 1j jDλ


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










 −


g
 (17) 

where jt

jt

D
λ

∂

∂
 is the partial derivative of Djt on λjt, λjt denotes the contribution coefficient of the 

measurement j being associated with the target t, and jtλ+  is the contribution coefficient of the 

measurement j being associated with the target t after the iteration ( { }2,3,...,jt Mλ+ ∈ ). In 

addition, if t is equal to 1, the contribution coefficient 1jλ
+  after iteration is equal to 

2
1 ( )

M

ji
i
λ+

=

− ∑ .The iterative process is summarized as follows. 

Step 1 Initiation of contribution coefficients. λjt is set to be 1/M for the contribution 
coefficient in the overlapping area, and λjt is equal to 1 in the non-overlapping area. The fixed 
constant jtβ ′  is calculated. 

Step 2 The process variables jtβ ′′ , Djt and jt

jt

D
λ

∂

∂
 are calculated. 
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Step 3 jtλ+  is updated and 1
2

1 ( )
M

j ji
i

λ λ+ +

=

= − ∑ . 

Step 4 λjt0 and 
0jtλ+ are equal to 0, if 

0
0jtλ+ ≤ . 

Step 5 Making jt jtλ λ+= , and repeating from the step 2 to the step 4 until | |jt jtλ λ σ+ − ≤ or 
the iteration limit is reached. 

It can be seen that a single iteration of the measurement j being associated with the target 
t, (T+17) multiplications, 3 divisions, and (T+9) additions are necessary, where T is the number 
of measurements in the target t (validation gate t, { }2,3,...,t M∈ ). The combined innovation 
Vt(k) of the target t is 

   
1 1

1

( )
( ) ( )

+

T T
jt jt jt

t jt jtT
j j

jt jt
j

P U k
V k U k

P B

λ
β

λ= =

=

= =∑ ∑
∑

   t =1, 2, …, M  (18) 

where 

1

jt jt
jt T

jt jt
j

P

P B

λ
β

λ
=

=
+∑

is association probability, M is the target number, and B is a constant 

depending on the clutter density. 
Finally, the combined innovation Vt(k) calculated in the above three cases is used for each 

target to update the current state of the target (track filtering). 

3. Flow diagram of the LJPDA algorithm 
The multi-target tracking algorithm based on loss function is summarized as follows. 

Step 1 Target state prediction and innovation Ujt(k) between measurements and targets are 
calculated. 

Step 2 The relationship between the measurement and the target validation gate according 
to (2)-(3) is determined, and 2

jtd  and the likelihood function Pjt are calculated. 
Step 3 According to the relationship between the measurement and the target validation 

gate, the combined innovation Vt(k) of the target is calculated. Some specific process should 
be noticed. 

1) If the validation gates do not overlap, or there is no measurement in the overlapping 
area, the combined innovation Vt(k) of the target is calculated according to (4). 

2) If there is only one measurement in validation gates of the target that falls in the 
overlapping area, the measurement is associated with the target k0 and 

2
0 1arg min{(1 2 ) ,1 }Dn n

n
k P d n m= − ≤ ≤ . Then combined innovation Vt(k) is calculated 

according to (7) 
3) If there is at least one measurement in the overlapping area, also, if there are multiple 

measurements in the validation gates, we used iteration mothed to calculate the optimal 
contribution coefficient λjt referring to case 3. Finally, the combined innovation Vt(k) 
is calculated according to (18). 

Step 4 Filtering is performed to update the current state of the target. 
LJPDA based on Kalman filter [23] is shown in Fig. 4. 
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Fig. 4. Flow chart of LJPDA 

4. Algorithm simulation 

4.1 Validity simulation 
In our experiments, there are four targets moving at constant speeds simultaneously and the 
initial states in Cartesian coordinate system (X = [ x; vx; y; vy]) are given as X1 = [ -6; 1; 0; 25], 
X2 = [ -2; 0; 0; 24], X3 = [ 2; 1; 0; 28] and X4 = [ 6; -1; 0; 27], respectively. Units of range and 
velocity are meter and meter per second, respectively. Moreover, the number of sampling 
points is equal to 85, standard deviation of radar ranging and angle measurements are σΡ = 
1.6m and σѳ = 0.02rad, respectively. In addition, the number of clutter in the scanning interval 
follows the Poisson distribution with parameter λ = 5, the position of each clutter is uniformly 
distributed in the scanning interval, the detection probability PD = 0.98, and the validation gate 
probability PG = 0.989. Fig. 5 shows real and measurement tracks. 
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Fig. 5. Real and measurement tracks 

 
Fig. 5 a, b, c, d exhibit tracks of four targets for real tracks, tracks prior to data association 

when considering the impact of noise, tracks prior to data association when considering the 
effect of noise and clutter, and tracks obtained after data association and track filtering 
considering the impact of noise and clutter, respectively. It can be seen from Fig .5a there are 
two intersections in real tracks and targets are very dense. It can further be seen from Fig. 5c 
there are too many overlapping areas in tracks when considering the impact of noise and clutter. 
Consequently, it is hard to perform data association successfully in our experiments with 
severe environment. However, Fig. 5d reveals that LJPDA can accurately associate 
measurements with real tracks in our experiments, where dots indicate data association is 
successful, and circles denote data association is unsuccessful. Extensive numerical results 
have verified the good performance of target tracking for LJPDA 

4.2 Performance analysis 
In this subsection, we analyze performance of the LJPDA algorithm proposed, and compare it 
with JPDA which is acknowledged as one of the ideal methods [13]. 

We assume there are two intersecting and uniform moving targets in our experiments, and 
their initial positions are X1 = [ -29500; 400; 34500; -400] and X2 = [ -26200; -200; 34500; -
400], respectively. 

Parameters used in our experiments are shown in Table 1, where Q and γ are noise 
components and validation gate parameters, respectively. Additionally, false measurements 
were produced uniformly in a square centered at the correct measurements with an area of

/ 10c vA n Aλ= = , where λ denotes the number of false measurements per unit area, and λ = 

0.004. cn is the total number of false measurements, and 
1/2( )vA S kπγ= . Moreover, there are 

70 simulation steps in every run, and totally 50 runs. The real trajectories of the two targets 
and measurements falling into the gates are shown in Fig. 6. The root mean square errors 
(RMSE) of the two algorithms are shown in Fig. 7. 
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Table 1. Simulation parameters 
T σr σѳ Q1 Q2 PD PG γ 
1 s 150m 0.02rad 0.01 0.01 0.98 0.9997 -2ln(1-PG) 

 

 
(a) Real tracks of two targets                           (b) Measurements in validation gates               

Fig. 6. The real trajectories and the measurements in validation gates 
 

 
  (a) RMSE of ranging for the target 1               (b) RMSE of ranging for the target 2 

Fig. 7. RMSE of range for the target 1 and target 2 
 

As shown in Fig. 6, many unwanted echoes (clutter) exist in the validation gate, which lead 
to many intersections in measurement trajectories Fig. 7 shows the root mean square error 
(RMSE) of ranging on the X-axis and Y-axis for the target 1 and the target 2 demonstrated in 
Figure 6 with σr =150 m (the original standard deviation of ranging is 150m). It can be observed 
from Fig. 7 there is only small difference for RMSE of ranging between LJPDA and JPDA, 
and the maximum difference is less than 1m. Extensive experiments reveal that average 
estimation error of JPDA and LJPDA are 73.36m and 72.74m, respectively (the average 
difference is less than 0.52), which are far less than the original standard deviation value of 
150m. Consequently, estimation errors of JPDA and LJPDA are very close, and both JPDA 
and LJPDA exhibit good performance of target tracking. 

Having discussed the estimation error of LJPDA, we now proceed to analyze the 
computation load of LJPDA proposed. In order to evaluate the computation efficiency, we run 
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LJPDA and JPDA algorithm by using MATLAB, and compare the run time by using a general 
purpose CPU cores of i5-3210m operating at up to 2.5GHz with 8GB DDR3. Extensive 
simulations have been done by using JPDA and LJPDA, and curves of the average running 
time for a single-step versus the number of steps are plotted in Fig. 8. As shown in this figure, 
running time of LJPDA in a single step is less than 1ms in most cases, and the maximum 
running time is 3.2ms, which is far less than that for JPDA. Moreover, JPDA needs more than 
7ms to finish data processing in most cases, and have to take more than 30ms for the 14th, 
18th, 22th, 24th and 26th step. Additionally, average time consuming for LJPDA and JPDA is 
illustrated in the Table 2. On average, LJPDA need to take 0.997ms to perform data 
association whereas JPDA have to take 10.2ms on the same contexts, which have been verified 
by extensive numerical results. On the other hand, there is only tiny difference of average 
estimation error for LJPDA and JPDA. Obviously, the LJPDA algorithm proposed is much 
better than the JPDA algorithm. 

 
Fig. 8. Average single-step time for data association 

 
Table 2. The algorithm performance comparison 

Algorithm Average running time (ms) Average RMSE (m) 
LJPDA 0.977 72.74 
JPDA 10.2 73.36 

 
All in all, LJPDA proposed can track multiple targets in the clutter environment smoothly, 

and exhibits similar performance in tracking accuracy with JPDA. Particularly, LJPDA 
algorithm proposed has lower computation complexity than JPDA. 

5. Conclusion 
In this paper, a joint probabilistic data association algorithm (LJPDA) based on loss function 
is proposed. We divide data association into three cases, adopt contribution efficient to depict 
the contribution of a valid measurement on the associated target, and define the loss function 
tightly relevant to the estimation error and contribution coefficients. Then, we formulate the 
equation set for the optimal contribution coefficient by minimizing the loss function. Finally, 
the optimal contribution coefficient is attained by using Newton-Raphson method. Extensive 
experiments show that computation burden of the LJPDA algorithm proposed is much less 
than that of JPDA, and their estimation error is similar. Consequently, this new algorithm takes 
less run time with good performance, and is very helpful for data association of target tracking. 
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