• 제목/요약/키워드: loosening load

검색결과 62건 처리시간 0.323초

나사 접근 구멍 각도가 조절 가능한 새로운 경사형 지대주의 파절강도 및 나사 풀림력 연구 (Evaluation of Fracture Strength and Screw Loosening of a New Angled Abutment with Angulated Screw Channel)

  • 최재원
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.623-628
    • /
    • 2023
  • The purpose of this study was to evaluate the fracture strength and removal torque value (RTV) of a conventional angled abutment and a newly developed angled abutment (Beauty up abutment) with an angulated screw access hole. Each abutment was divided into a control group and an experimental group (n = 20, respectively). To measure the fracture strength, the abutment was connected to the internal hex implant with 30 Ncm torque, and a load was applied at 30 degree angle with cross-head speed of 1 mm/min using a universal testing machine according to the ISO 14801:2016 standard. To measure RTV, each abutment was fastened to the implant with 30 Ncm torque. Retightening was performed after 10 minutes, and initial RTV was measured with a digital torque gauge. After retightening, a load of 250 N was applied to the abutment at a 30 degree angle using a chewing simulator. After a total of 100,000 repeated loads, RTV was measured. Statistical analysis was performed using Wilcoxon signed rank test and Mann-Whitney U test (α = .05). The fracture strength of the experimental group was statistically significantly lower than that of the control group (P = .009). There was no significant difference between initial RTV and post-loading RTV between the experimental group and the control group (P = .753, P = .527, respectively), and cyclic loading did not significantly affect RTV in both groups (P = .078).

모래지반에서 반복수평하중을 받는 항타말뚝의 거동 (Behavior of Laterally Cyclic Loaded Piles Driven into Sand)

  • 백규호;박원우;김영준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.913-922
    • /
    • 2009
  • Fourteen model pile load tests using a calibration chamber and instrumented model pile were preformed to investigate the variation of the behaviors of driven piles in sands with soil and lateral cyclic loading conditions. Results of the model tests showed that the first loading cycle generated more than 70% of the pile head rotation developed for 50 lateral loading cycles. Lateral cyclic loading also made an increase of the ultimate lateral load capacity of piles for $K_0$=0.4 and an decrease for $K_0$ higher than 0.4. Higher portion of the increase or decrease in the ultimate lateral load capacity by lateral cyclic loading was generated for the first loading cycle due to densification of loosening of the soil around the pile by lateral cyclic loading. It was also observed that a two-way cyclic loading caused higher ultimate lateral load capacity of driven piles than a one-way cyclic loading. When the pile was in the ultimate state, the maximum bending moment developed in the pile increased with increasing $K_0$ value of soil and was insensitive to the magnitude and number of lateral cyclic loading.

  • PDF

내측 연결 임플란트에서 지대주 내부길이가 나사 풀림에 미치는 영향 (Influence of internal connection length on screw loosening in internal connection implants)

  • 김지선;박영범;최현민;김성태;김현철;김선재;문홍석;이재훈
    • 대한치과보철학회지
    • /
    • 제55권3호
    • /
    • pp.251-257
    • /
    • 2017
  • 목적:본 연구에서는 long internal connection 형태의 임플란트 지대주를 내부 연결 길이에 변화를 주어 임플란트-지대주 결합부의 안정성을 비교 평가해 보고자 하였다. 재료 및 방법: Long internal connection의 임플란트(Replus system, $4.7{\times}11.5mm$)를 각각 지대주의 길이에 따라 4개의 군(1, 2, 3, 4 mm 군)으로 나누었고 총 20개의 시편을 사용하였다. 시편을 레진에 매몰하여 고정시키고 100 N의 힘으로 임플란트 장축에 대해 30도의 각도에서 $1.0{\times}10^6$ 번의 반복하중을 가한 후 하중 전 후의 풀림회전력의 차이를 계산하여 95% 유의수준에서 Kruskal-Wallis 검정 방법을 통해 통계 분석하였다. 결과:지대주 내부 길이에 따른 풀림 회전력의 통계적 유의성은 나타나지 않았으며 (P > .05) 어떤 시편에서도 완전한 나사 풀림이나 나사 파절은 관찰되지 않았다. 결론: 내측 연결 임플란트에서 지대주 내부길이에 따른 나사 풀림의 정도는 차이가 나지 않았다.

치과용 세라믹 임플란트 지대주의 기계적 특성 및 절단면 평가 (Mechanical Properties and Cross-sectional Surface Evaluation of Dental Ceramic Abutment)

  • 황준호;권성민;최성기;성미애;이규복
    • 한국표면공학회지
    • /
    • 제51권5호
    • /
    • pp.309-315
    • /
    • 2018
  • The purpose of this study is to assess the mechanical properties of the ceramic abutment with washer. In this study, ceramic abutment were used, tested with $30^{\circ}$ compression load, shear fatigue, adaptation accuracy test(rotation angle, contact interval), removal torque force test, torsional breaking force test. The $30^{\circ}$ compression load was 729 N, the shear fatigue load was 275 N, adaptation accuracy test of rotation angle was within $3^{\circ}$, contact interval within $10{\mu}m$, and removal torque force test value is $18.88N{\cdot}cm$, torsional breaking force test value is $35.52N{\cdot}cm$. Ceramic abutment with a washer fitted have sufficient mechanical strength and may be substituted for titanium abutment.

악궁의 만곡도 및 임플랜트 위치에 따른 삼차원적 유한요소 응력분석 (A STUDY ON THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE STRESSES ACCORDING TO THE CURVATURE OF ARCH AND PLACEMENT OF IMPLANTS)

  • 이돈오;정재헌;조규종
    • 대한치과보철학회지
    • /
    • 제33권1호
    • /
    • pp.98-129
    • /
    • 1995
  • The purpose of this study was to evaluate how mandibular implant-supported fixed complete prosthesis, implant and mandible responded mechanically, according to curvature of arch, number and location of fixture, and amounts of load. The shape of mandibular arch was tapered or square form and, 4 or 6 fixtures were implanted in each arch model. A vertical load of 10kg was applied at the center of prosthesis and a vertical load of 20kg was applied at the location of the 10mm or 20mm cantilever posterior to the most distal implant. Three-dimensional finite element analysis was performed for stress distribution and deflection using commercial software(ABAQUS program) for Sun-SPARC Workstation. The results were as follows : 1. The case square arch form was more stable to compare with that of tapered arch form in respect of stress distribution and displacement under vertical load on the center of prosthesis. 2. 6-implants cases were more stable than 4-implants cases for decreasing bending torque under vertical load on the center of prosthesis. 3. Under vertical load on cantilever extension, the case of 10mm long cantilever was more stable than that of 20mm long cantilever in respect of stress distribution and displacement. 4. Under vertical load on cantilever extension, 6-implants cases had a tendency to reduce displacement and to increase the reaction force of supporting point due to increasing of the bending stiffness of the prosthesis than 4-implant case. 5. When the ends of 10mm or 20mm long cantilever were loaded, the most distal implant was under compressive stress but the second most distal implant was under the highest tensile stress and the remaining implants were under varying tensile stress. 6. Because 6-implants cases had smaller displacement than 4-implants cases, 6-implants cases were more favorable in respect of prevention of screw loosening under repeated loadings.

  • PDF

연직 불연속면이 존재하는 얕은 심도의 사질토 지반에서 2-arch 터널 단계별 굴착에 따른 하중전이에 관한 실험적연구 (An experimental study on the load transfer machanism of shallow 2-arch tunnel excavation sequence with vertical discontinuity planes in sandy ground)

  • 오범진;이상덕
    • 한국터널지하공간학회 논문집
    • /
    • 제13권3호
    • /
    • pp.215-231
    • /
    • 2011
  • 본 논문에서는 연직 불연속면을 포함하는 지반에서 얕은 심도 2-arch 터널 굴착에 따른 거동특성을 실험적으로 연구하였으며, 2-arch 터널 굴착에 따른 필러부 하중전이 특성을 관찰하였다. 연직 불연속면의 위치를 변화시키고, 2-arch터널 시공단계별로 모형실험을 수행하였다. 실험결과, 2-arch 터널 굴착에 따른 이완하중이 불연속면이 위치한 곳에 집중되었고, 불연속면에 차단되어 불연속면을 넘어서까지 하중이 전이되지는 않았다. 또한 인접한 터널의 하반을 굴착할 때보다 상반을 굴착할 때에 필러부와 지반변형에 더 큰 영향을 미치는 것으로 나타났다.

반복 하중 후 골밀도 감소에 따른 척추경 나사못의 고정력(Pullout Strength)감소 형태 분석 (Biomechanical analysis of pullout strength of the pedicle screws in relation to change bone mineral density)

  • 정덕영;이성재;김동수;신정욱;김원중;석세일
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.155-156
    • /
    • 1998
  • Screw loosening and subsequent pullout can be attributed to the reduction in bone mineral density in the vertebrae manifested by osteoporosis in which the decrease in fixation strength between the cancellous bone and screw threads are accelerated by repeated loads exerted by patients own weight and activities following the surgery. In this study, the change in pullout strength of the pedicle screws was investigated before and after repeated loads were imparted. For this purpose. Diapason pedicle screws $(6.7\times40mm)$ were inserted onto fresh porcine spine specimens (T1-L5) after bone mineral density was measured using a DEXA. With an MTS, an axial load was applied at a loading rate of 0.33mm/sec until failure to measure the maximum pullout strength. Flexion moment of 7.5N-m was then imparted at 0.5Hz for 2000 cycles. It was found that the maximum pullout strength was exponentially related to BMD regardless of load types ($107.71\;\times\;\exp^{(1.43{\times}BMD)}r^2=0.93$, P<0.0001 without repeated load; ($107.71\;\times\;\exp^{(2.19{\times}BMD)}r^2=0.78$, P<0.0001 with repeated load). The results suggest that the reduction in pullout strength for pedicle screws is far more prominent in osteoporotic spine than in normal spine especially as number of repeated load was increased. More importantly, it was demonstrated that the level of bone mineral density and the activity level of the patient should be evaluated in more detail for successful implementation of pedicle screw systems in spinal surgery.

  • PDF

Load-transferring mechanism and evaluation theory of bolt with single and double nut fasteners

  • Qiyu Li;Dachang Zhang;Hao Xu;Yibi Li;Weiqun Chen;Kaixuan Zhang
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.261-276
    • /
    • 2023
  • The use of the ordinary double nut (i.e., ODN) composed of a master nut (i.e., M-nut) and a slave nut (i.e., S-nut) is a highly efficient method to prevent bolts loosening. A novel double nut (i.e., FODN) composed of a master nut (i.e., M-nut) and flat slave nut (i.e., FS-nut) is proposed to save raw materials. The bolt fastening tests with single nut, ODN and FODN are performed to investigate the preload and counterbalance forces. Corresponding finite element analysis (FEA) models are established and validated by comparing the preload with the experimental results. The load-bearing capacity, the extrusion effect, and the contact stress of each engaged thread for ODN and FODN are observed by FEA. The experimental and simulated results revealed that the bolt fastening with double-nut has different load-transferring mechanisms from single-nut. Nevertheless, for double-nut/bolt assemblies, the FS-nut can provide load transfer that is like that of the S-nut, and the FODN is a reasonable and reliable fastening method. Furthermore, based on the theory of Yamamoto, a formula considering the extrusion effect is proposed to calculate the preload distribution of the double-nut, which is applicable to varying thicknesses of slave-nuts in double-nut/bolt assemblies.

Damage detction and characterization using EMI technique under varying axial load

  • Lim, Yee Yan;Soh, Chee Kiong
    • Smart Structures and Systems
    • /
    • 제11권4호
    • /
    • pp.349-364
    • /
    • 2013
  • Recently, researchers in the field of structural health monitoring (SHM) have been rigorously striving to replace the conventional NDE techniques with the smart material based SHM techniques, employing smart materials such as piezoelectric materials. For instance, the electromechanical impedance (EMI) technique employing piezo-impedance (lead zirconate titanate, PZT) transducer is known for its sensitivity in detecting local damage. For practical applications, various external factors such as fluctuations of temperature and loading, affecting the effectiveness of the EMI technique ought to be understood and compensated. This paper aims at investigating the damage monitoring capability of EMI technique in the presence of axial stress with fixed boundary condition. A compensation technique using effective frequency shift (EFS) by cross-correlation analysis was incorporated to compensate the effect of loading and boundary stiffening. Experimental tests were conducted by inducing damages on lab-sized aluminium beams in the presence of tensile and compressive forces. Two types of damages, crack propagation and bolts loosening were simulated. With EFS for compensation, both cross-correlation coefficient (CC) index and reduction in peak frequency were found to be efficient in characterizing damages in the presence of varying axial loading.

볼트풀림에 의한 터미널 블록의 접속부 발열 위험성 분석 (Analysis of the Risk of Heat Generation due to Bolt Loosening in Terminal Block Connector Parts)

  • 연영모;김승희
    • 한국화재소방학회논문지
    • /
    • 제34권3호
    • /
    • pp.67-75
    • /
    • 2020
  • 본 연구는 산업현장에서 사용되는 분전반 내 터미널 블록의 탄화 사고를 예방하기 위한 목적으로, 전선 접속부 볼트의 이상(Abnormal) 풀림 각도에 따라 변화하는 정상전류 및 과전류의 접속부 발열 위험성을 확인하고 열적 특성을 통해 위험성을 분석하였다. 이를 위하여 터미널 블록에 Resistance temperature detector (RTD) 센서 보드를 설치하여 실시간으로 터미널 블록의 발열 온도와 온도의 변화를 측정하는 새로운 기법을 적용하였다. 실험 결과 정격 전류가 작은 터미널 블록 모델의 발열 온도가 높게 나타남에 따라 부하전류에 따른 터미널 블록 용량 선정의 중요성을 확인하였다. 또한 정격전류가 높은 터미널 블록의 정격 전류가 높을수록, 이상 풀림 정도가 클수록 탄화점이 빨라짐을 확인하였다. 이러한 발열 온도 모니터링을 통해서 실시간 발열 온도를 측정할 수 있었고 열적 분석을 통해서 단계별 위험수위 설정이 가능함을 확인할 수 있었다. 본 연구의 탄화 위험성 측정 및 분석 결과는 탄화로 인한 화재 위험성에 대한 응용 연구의 이론적 기초를 제공할 수 있다. 또한 본 연구에서 새롭게 적용한 온도 센서 보드를 활용한 열화 측정 방법은 위험수준관리 및 전기적 접촉 불량으로 인한 화재 예방 활동에 광범위하게 적용 가능할 것으로 사료된다.