• Title/Summary/Keyword: loop primers

Search Result 47, Processing Time 0.031 seconds

Simple and Rapid Detection of Vancomycin-Resistance Gene from Enterococci by Loop-Mediated Isothermal Amplification

  • Baek, Yun Hee;Hong, Seung Bok;Shin, Kyeong Seob
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.149-156
    • /
    • 2020
  • We developed a simple and rapid method for detecting vancomycin resistance genes, such as vanA and vanB, using loop-mediated isothermal amplification (LAMP). To identify not only vancomycin resistance genes, but also the genus Enterococcus, primers were designed for vanA, vanB, and 16S rRNA. Screening for vancomycin susceptibility in Enterococcus was performed using Etest (bioMérieux Inc). The results of the LAMP assay were compared to those of real-time RT-PCR. The optimal conditions for the LAMP assay were 65℃ for 60 min. The detection limits of the LAMP assay for vanA, and vanB were 2 × 102 copies/reaction. Compared to RT-PCR, the sensitivities and specificities of LAMP for 16S rRNA, vanA, and vanB were 100/100%, 100/100%, and 100/100%, respectively. The vanA genotype-vanB phenotype accounted for 57.5% (46/80) of the vancomycin-resistant Enterococci samples collected from 2016 to 2019. In conclusion, the LAMP assay developed in this study showed high sensitivity and specificity for vancomycin-resistant genes. Moreover, due to the simplicity and rapidity of the LAMP assay, its use can be very useful in clinical microbiology laboratories.

Development of loop-mediated isothermal amplification method for the rapid and sensitive detection of bovine tuberculosis in Korea native cattle (한우 결핵의 신속 감별진단을 위한 등온증폭법 개발)

  • Hwang, Eun-Suk;Lee, Tae-Uk;Jung, Dae-Young;Cho, Ho-Seong
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2011
  • Loop-mediated isothermal amplification (LAMP) was developed to detect Mycobacterium tuberculosis complex (MTC) and non-tuberculous mycobacterium (NTM) genomic DNA in blood samples of Korea native cattle. A set of four primers, two outer and two inner, were designed from M. bovis and M. avium genomic DNA targeting the IS6110 and 16S rRNA gene, respectively. Based on 85 Intradermal Tuberculin Test (ITT) positive blood sample and using conventional PCR and LAMP, the agreement quotient (kappa), which measures agreement beyond chance were 0.93 (conventional PCR) and 0.97 (LAMP), respectively. The detection limit of the LAMP method was $2.0{\times}10^2$ copy/ml M. bovis and M. avium cells, compared to $2.0{\times}10^3$ copy/ml M. bovis and M. avium cells for conventional PCR. These results suggest that the LAMP is a powerful tool for rapid, sensitive, and practical detection of MTC and NTM in blood samples of Korea native cattle.

Rapid and sensitive detection of Salmonella species targeting the hilA gene using a loop-mediated isothermal amplification assay

  • Chu, Jiyon;Shin, Juyoun;Kang, Shinseok;Shin, Sun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.30.1-30.8
    • /
    • 2021
  • Salmonella species are among the major pathogens that cause foodborne illness outbreaks. In this study, we aimed to develop a loop-mediated isothermal amplification (LAMP) assay for the rapid and sensitive detection of Salmonella species. We designed LAMP primers targeting the hilA gene as a universal marker of Salmonella species. A total of seven Salmonella species strains and 11 non-Salmonella pathogen strains from eight different genera were used in this study. All Salmonella strains showed positive amplification signals with the Salmonella LAMP assay; however, there was no non-specific amplification signal for the non-Salmonella strains. The detection limit was 100 femtograms (20 copies per reaction), which was ~1,000 times more sensitive than the detection limits of the conventional polymerase chain reaction (PCR) assay (100 pg). The reaction time for a positive amplification signal was less than 20 minutes, which was less than one-third the time taken while using conventional PCR. In conclusion, our Salmonella LAMP assay accurately detected Salmonella species with a higher degree of sensitivity and greater rapidity than the conventional PCR assay, and it may be suitable for point-of-care testing in the field.

Development of a Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Detecting Nervous Necrosis Virus in Olive Flounder Paralichthys olivaceus

  • Suebsing, Rungkarn;Oh, Myung-Joo;Kim, Jeong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.1021-1028
    • /
    • 2012
  • In this study, a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the rapid, sensitive, and inexpensive detection of nervous necrosis virus (NNV) in olive flounder, Paralichthys olivaceus, in Korea. A set of six specific primers was designed to target the RNA 2 gene encoding the coat protein of Korean NNV strains. The RT-LAMP reaction successfully detected NNV after 30 min at $65^{\circ}C$. When the sensitivities among RT-LAMP, RT-PCR, and nested RTPCR were compared, the RT-LAMP was shown to be able to detect the RNA template at $2.58{\times}10^{-2}\;TCID_{50}/ml$, whereas the RT-PCR and nested RT-PCR were only able to detect the RNA template at $2.58{\times}10^2\;TCID_{50}/ml$ and $2.58TCID_{50}/ml$, respectively. Thus, the sensitivity of the RT-LAMP assay was higher than those of the RT-PCR assays. In the specificity test of the RT-LAMP, 2 genotypes of NNVs (SJNNV and RGNNV) were positive; however, no other fish viruses were positive with the primers, indicating that the RT-LAMP assay is only specific to NNV. A total of 102 olive flounder were collected from hatcheries between 2009 and 2011. The occurrence of NNV in olive flounder was determined to be 53.9% (55/102) by the RT-LAMP. On the other hand, the prevalence based on the nested RT-PCR and RT-PCR results was 33.8% (34/102) and 20.6% (21/102), respectively. This result indicates that the RT-LAMP assay developed in this study is suitable for early field diagnosis of NNV with high sensitivity.

Detection of Soybean mosaic virus by Reverse Transcription Loop-mediated Isothermal Amplification (Reverse transcription Loop-mediated isothermal amplification을 이용한 Soybean mosaic virus의 진단)

  • Lee, Yeong-Hoon;Bae, Dae-Hyeon;Kim, Bong-Sub;Yoon, Young-Nam;Bae, Soon-Do;Kim, Hyun-Joo;Mainali, Bishwo P.;Park, In-Hee;Lee, Su-Heon;Kang, Hang-Won
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.315-320
    • /
    • 2015
  • Soybean mosaic virus (SMV) is a prevalent pathogen that causes significant yield reduction in soybean production worldwide. SMV belongs to potyvirus and causes typical symptoms such as mild mosaic, mosaic and necrosis. SMV is seed-borne and also transmitted by aphid. Eleven SMV strains, G1 to G7, G5H, G6H, G7H, and G7a were reported in soybean varieties in Korea. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) method allowed one-step detection of gene amplification by simple procedure and needed only a simple incubator for isothermal template. This RT-LAMP method allowed direct detection of RNA from virus-infected plants without thermal cycling and gel electrophoresis. In this study, we designed RT-LAMP primers named SML-F3/B3/FIP/BIP from coat protein gene sequence of SMV. After the reaction of RT-LAMP, products were identified by electrophoresis and with the detective fluorescent dye, SYBR Green I under daylight and UV light. Optimal reaction condition was at $58^{\circ}C$ for 60 min and the primers of RT-LAMP showed the specificity for nine SMV strains tested in this study.

Effect of RFLP Marker of the Mitochondrial DNA D-Loop Region on Milk Production in Korean Cattle (한우 Mitochondrial DNA D-Loop 영역의 RFLP Marker가 산유량에 미치는 영향)

  • Chung Eui-Ryong;Chung Ku-Young
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.218-225
    • /
    • 2005
  • This study was performed to determine sequence variation and RFLP of the mt DNA D-loop region using Southern blot hybridization analysis and to develop mt DNA marker affecting milk production traits in Hanwoo cows. The PCR was used to amplify an 1142 bp fragment within the D-loop region of mt DNA using specific primers. Mt DNA were digested with seven restriction enzymes and hybridized using DIG-labeled D-loop probe. The mt DNA RFLP polymorphisms were observed in the four enzymes, BamHI, RsaI, XbaI and HpaII. Nucleotide substitutions were detected at positions 441 (G/C), 469 (T/C), 503 (C/T), 569 (G/A), 614 (C/A) and 644 (C/T) of the mt DNA D-loop region between two selected lines. Significant relationship between the XbaI RFLP type and breeding value was found(p<0.05). Cows with A type had higher estimated breeding values than those with B type (P<0.05) between high and low milk production lines. Therefore, the RFLP marker of mt DNA could be used as a selection assisted tool for individuals with high milk producing ability in Hanwoo.

Effect of Sequence Variation in Bovine Mitochondrial DNA D-loop Region on Economic Traits for Hanwoo (한우 경제형질에 미치는 Mitochondrial DNA D-loop 영역의 염기서열 변이효과)

  • Oh, J.D.;Yoon, D.H.;Kong, H.S.;Lim, H.J.;Lee, H.K.;Cho, B.W.;Hong, K.C.;Jeon, G.J.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.933-938
    • /
    • 2003
  • This study was performed to analyse the sequences of variations of mtDNA D-loop and their effects on carcass traits in Hnawoo(Korean cattle). The resulting sequences were compared with previously published sequences for other cattle breeds(GenBank J01394). The PCR was used to amplify a total of 964 bp between nucleotide 15758 and 383 within D-loop region of mtDNA using specific primers. Twenty five polymorphic sites by nucleotide substitution were found in mtDNA of Hanwoo. The frequencies of positions at 169, 16042, 16093, 16119, 16255 and 16302 nt with high levels of sequence polymorphism were 0.891, 0.117, 0.109, 0.182, 0.197 and 0.117, respectively. The substitution effect at 169 and 16119 nt was found significant on marbling score. Also substitution effect at 169 and 16042 nt was highly significant(p〈0.01) on backfat. thickness. Polymorphism of mtDNA sequence in D-loop region could be useful for the analysis of cytoplasmic genetic variation and associations with the other economically important traits and maternal lineage analysis in Hanwoo.

Effect of Sequence Variation in Mitochondrial DNA D-loop Region on Milk and Milk Fat Production in Holstein Cows (Holstein의 유량과 유지방 생산에 미치는 Mitochondrial DNA D-loop 영역의 염기 서열 변이 효과)

  • Oh J. D.;Kong H. S.;Lee H. K.;Jeon G. J.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.1
    • /
    • pp.9-13
    • /
    • 2005
  • This study was performed to analyze the sequence variation in mtDNA D-loop and their effects on milk and milk fat production in Holstein cows. The analyzed sequences were compared with previously published sequences from other cattle breeds (GenBank J01394). PCR was performed to amplify a total of 964 bp between nucleotide 15758 and 383 within D-loop region of mtDNA using specific primers. Thirty five polymorphic sites by nucleotide substitution were found in mtDNA. The frequencies of positions at 106, 169, 16057, 16231 and 16255 nt with high levels of sequence polymorphism were 0.090, 0.555, 0.055, 0.090 and 0.050, respectively. The substitution effect at 169 nt was found significant on milk production, and substitution effect at 16118, 16139 and 16302 nt was highly significant (p<0.1) on milk fat production. Polymorphism of mtDNA sequence in D-loop region might be useful for the analysis of cytoplasmic genetic variation and associations with the other economically important traits and maternal lineage analysis in Holstein cows.

G-Proteins Expressed in the Ocellus of the Hydromedusan, Spirocodon saltatrix.

  • Iwasa, Tatsuo;Shimazaki, Yumiko;Yamamoto, Masamichi;Ohtsu, Kohzoh
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.278-280
    • /
    • 2002
  • We have cloned a hydromedusan opsin cDNA and showed that the deduced amino acid sequence of the cytoplasmic loop between helices 5 and 6 (loop 5-6) was clearly different from that reported so far. The amino acid sequence of the loop 5-6 is important on determination of the specificity for the coupled G- protein. To clarify which class of G-protein mediates the phototransduction system in the ocellus of the hydromedusan, we investigated G-proteins expressed in the ocellus. By PCR against the cDNA of the ocellus with primers designed according to the conserved amino acid sequence in G-protein a subunit, we obtained three kinds of cDNA fragments. Based on the sequence similarities, ttwo of them (JGI and JG3) were classified as $G_{i}$ and $G_{q}$, respectively. The other one (JG2) was a new subtype within $G_{*}$ class. Electron microscopic immunocytochemistry with the antiserum against the C-terminal sequence of $G_{q}$ or $G_{t}$ revealed the presence. of the both classes in the ocellus. The similarity of the C-terminal sequence of the JG2 with that of bovine $G_{t}$ suggests that the anti- $G_{t}$ antiserum would bind to JG2. These results suggest the possibility that the hydromedusan rhodopsin decides the specificity for the coupled G-protein by the other domain than the loop 5-6.oop 5-6.5-6.

  • PDF

Development of a Rapid Detection Method for Pectobacterium carotovorum subsp. carotovorum Using the Loop-Mediated Isothermal Amplification (LAMP) (Loop-Mediated Isothermal Amplification (LAMP)법을 이용한 Pectobacterium carotovorum subsp. carotovorum의 신속 진단법 개발)

  • Kim, Jeong-Gu;No, Ji-Na;Park, Dong-Suk;Yoon, Byoung-Su
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • Pectobacterium carotovorum subsp. carotovorum is the causative agent of soft rot in crops such as potato and cabbages. Loop-mediated isothermal amplification (LAMP) is a simple DNA amplification method, as well as isothermal PCR technique. In this study, a new method for the rapid detection of Pectobacterium carotovorum subsp. carotovorum was developed using LAMP that named PCC-LAMP. Based on lytic murein transglycolase gene of Pectobacterium carotovorum subsp. carotovorum, a set of four primers for LAMP was designed. The optimal PCC-LAMP reaction temperature was established at $61^{\circ}C$. Under standard conditions, PCC-LAMP amplified $1{\times}10^3$ copies of clone PCC-pBX437 per reaction. Further, this method can also assay directly by SYBR Green I without electrophoresis. Amplification was not detected for five other bacterial species. In conclusion, PCC-LAMP may be a useful method for the detection Pectobacterium carotovorum subsp. carotovorum in the field.