• Title/Summary/Keyword: loop Antenna

Search Result 249, Processing Time 0.024 seconds

A Ultra-wide Band Half-wavelength Loop Antenna using Self-complementary Principle for UAV Applications (자기상보 원리를 이용한 UAV 탑재용 초광대역 반파장 루프 안테나)

  • Yoon, Myung-Han;Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.213-219
    • /
    • 2015
  • In this paper, we present a low-profile ultra-wide band half-wavelength loop antenna for UAV (Unmanned Aerial Vehicle) applications. The proposed antenna has an ultra-wide band using self-complementary principle. Also, the ground was located between radiators for reducing height of the antenna using image theory. Dimensions of proposed antenna have $0.20{\lambda}_L{\times}0.14{\lambda}_L{\times}0.16{\lambda}_L$ (${\lambda}_L$ is the free-space wavelength at lowest frequency). Measured -10 dB bandwidth was ultra-wide band as more than 50 : 1(over 0.3 GHz ~15 GHz). The radiation patterns of the antenna was omnidirectional like monopole antennas. Moreover, we tried the antenna mounted on under a fuselage of a scaled UAV. As a result, the proposed antenna on the UAV maintained ultra-wide band and omnidirectional radiation patterns at all frequencies.

Folded Loop Antennas for RFID Appilication (RFID 응용을 위한 폴디드-루프 안테나)

  • Choi, Tea-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.4
    • /
    • pp.199-202
    • /
    • 2007
  • In this paper, we examined the operating principle of a passive tag antenna for RFID system in UHF band. Based on the study, we proposed a novel RFID tag antenna which adopts the inductively coupled feeding structure to match antenna impedance to a capacitively loaded commercial tag chip. The proposed tag antenna consists of microstrip lines on a thin PET substrate for low-cost fabrication. The detail structure of the tag antenna were optimized using a full electromagnetic wave simulator of IE3D in conjunction with a Pareto genetic algorithm, and the size of the tag antenna can be reduced up to kr=0.27(2 cm2). We built some sample antennas and measured the antenna characteristics such as a return loss, an efficiency, and radiation patterns. The readable range of the tag antenna with a commercial RFID system showed about 1 to 3 m.

  • PDF

2.6 GHz-Band MIMO Omni Antenna Having Folded Configuration (폴디드 구조를 갖는 2.6 GHz 대역 MIMO 무지향 안테나)

  • Lee, Su-Won;Lee, Jae-Du;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 2015
  • In this paper, we propose 2.6 GHz single band dual polarization MIMO omni antenna for in-building applications. The proposed antenna operates at 2.6 GHz single LTE band, Up-link 2.52~2.54 GHz and Down-link 2.64~2.66 GHz. Horizontal and vertical polarizations of the antenna has been, respectively, constructed by the synthesis of four folded loop antennas and the folded monopole antenna. The height of the MIMO omni-directional antenna is minimized to be less than ${\lambda}/13.5$ from the ground. The measurement results show excellent MIMO omni antenna performance of 2.85 dBi vertical polarization gain, 2.29 dBi horizontal polarization gain, and 19.25 dB port isolation.

Design of mobile Radio Frequency Identification (m-RFID) antenna (Mobile RFID (Radio Frequency Identification) 용 안테나 계)

  • Kim, Yong-Jin;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3608-3613
    • /
    • 2009
  • In this paper, we propose a mobile Radio Frequency Identification antenna for mobile hand set. The proposed antenna with directive radiation characteristics based on combination of electric-magnetic radiators can be installed in the mobile hand-set. The combination of PIFA antenna for electric radiator and loop antenna for magnetic radiator is presented and designed for료 m-RFID reader system. Target frequency band is 900-MHz band. and desired gain is 4dBi. The antenna is simulated using Ansoft HFSS software and shows expected results. The antenna is also manufactured using FR4-epoxy circuit board (h=1 mm, $\varepsilon_{\tau}=4.4$). There are good agreements between the simulated and measured VSWR curves and radiation characteristics.

On the Optimal Antenna Weighting Method for Closed-Loop Transmit Antenna Diversity with Average and Peak Power Constraints (평균전력과 첨두전력 제한이 있는 폐루프 송신 안테나 다이버스티 시스템에서의 최적 안테나 가중치 방식 연구)

  • Lee, Ye-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.694-699
    • /
    • 2007
  • We consider an optimal antenna weighting scheme for a closed-loop transmit antenna diversity system in Rayleigh fading channels. We derive a closed-form expression for the optimal transmitter weights that minimize the average bit error rate (BER) subject to fixed average and peak transmit power constraints. It is shown that the peak power limitation degrades the average BER performance more significantly as the available average power and/or the number of transmit antennas increase.

Novel Shorted Meander-Line USB Dongle Antenna with a Compact Ground Plane

  • Jeong, Seong-Jae;Hwang, Keum-Cheol
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.610-613
    • /
    • 2010
  • This letter presents the design of a novel multiband USB dongle antenna with a compact ground plane. The radiating patch is composed of a modified meander-line monopole and a shorted loop to generate a dual-broadband resonance. The proposed antenna supports WiBro, Bluetooth, WLAN, WiMAX, and S-DMB services. The total dimensions of the fabricated antenna are 10 mm ${\times}$ 45 mm ${\times}$ 1 mm, the most compact size among multiband USB dongle antennas reported to date. The measured 10 dB reflection loss bandwidths are 20.8% (2.24 GHz to 2.76 GHz) and 20.2% (4.86 GHz to 5.95 GHz). The measured peak gain is 2.97 dBi, and efficiency is higher than 58%. In addition, the radiation pattern approximates an omnidirectional pattern.

Design of Small CRPA Arrays with Circular Microstrip Loops for Electromagnetically Coupled Feed

  • Hur, Jun;Byun, Gangil;Choo, Hosung
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.129-135
    • /
    • 2018
  • This paper proposes a design of small controlled reception pattern antenna (CRPA) arrays using circular microstrip loops with frequency-insensitive characteristics. The proposed array consists of seven identical upper and lower circular loops that are electromagnetically coupled, which results in a frequency-insensitive behavior. To demonstrate the feasibility of the proposed feeding mechanism, the proposed array is fabricated, and its antenna characteristics are measured in a full-anechoic chamber. The operating principle of the proposed feeding mechanism is then interpreted using an equivalent circuit model, and the effectiveness of the circular loop shape is demonstrated by calculating near electromagnetic fields in proximity to the radiator. The results confirm that the proposed feeding mechanism is suitable to have frequency-insensitive behavior and induces strong electric and magnetic field strengths for higher radiation gain in extremely small antenna arrays.

The Loss Characteristic of Small Loop Antenna (소형 루프안테나의 손실특성)

  • Hwang, Jae-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.762-765
    • /
    • 2009
  • In general, small antenna is located with several devices in the mobile handsets. But these devices are a bad influence to characteristics of antenna. This paper deals with the loss characteristics of small loop antenna near the several devices in the small handset. Especially, we analyzed effect of ground plane and condensers that use matching circuit. Result of analysis, condenser near feed point of antenna to have much effect on radiation efficiency.

  • PDF

Loop-Type Ground Radiation Antenna for a C-Shaped Ground Plane

  • Lee, Hongkoo;Zahid, Zeeshan;Kim, Hyeongdong
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, optimum locations for a loop-type ground radiation antenna are evaluated for C-shaped ground planes of two different sizes. To achieve good radiation performance, the antenna needs to be located such that it couples with the dominant current mode of the ground plane. Antenna locations are proposed using the characteristic mode analysis of the ground planes. The measured bandwidths of the antennas at the proposed locations have more than twice the bandwidths of the cases in which the antennas are coupled with non-dominant modes. The operating frequency of the antennas is 2.45 GHz.