• 제목/요약/키워드: longitudinal wave velocity

검색결과 84건 처리시간 0.024초

수분 함유량이 콘크리트의 종파 속도에 미치는 영향에 관한 연구 (Influence of Moisture Content on Longitudinal Wave Velocity in Concrete)

  • 이희근;이광명;김지상;김동수
    • 비파괴검사학회지
    • /
    • 제19권4호
    • /
    • pp.259-269
    • /
    • 1999
  • 최근 초음파속도법과 충격반향기법 등과 같이 탄성파를 이용한 비파괴검사 방법이 콘크리트의 강도나 탄성계수를 결정하는데 유용하게 사용되고 있다. 하지만 탄성파 속도에 영향을 미치는 다양한 인자들이 고려되지 않은 상태에서 비파괴검사가 행해지고 있어 실제로 만족할 만한 결과를 주지 못하고 있다. 이 연구에서는 다양한 영향인자들 중에서 특히 콘크리트의 수분함유량이 종파 속도에 미치는 영향정도를 실험을 통해 조사하였다. 콘크리트 내부의 수분함유량이 감소하면, 즉 콘크리트가 건조해지면 종파 속도는 점점 감소하며, 충격반향기법에 의해 측정된 막대파 속도가 초음파 속도보다 수분의 영향을 더 많이 받는 것으로 나타났다. 또한 기건양생하에서는 재령이 증가함에 따라 수분함유량이 감소하게 되어 콘크리트의 종파 속도는 거의 증가하지 않는 반면에 강도는 점차적으로 증가하는 경향을 보이기 때문에 종파 속도와 콘크리트 강도의 상관관계 설정시 이를 반드시 고려해야 할 것으로 판단된다.

  • PDF

콘크리트에서의 One-Sided 응력파 속도 측정 기법의 적용에 관한 연구 (Application Advanced One-Sided Stress Wave Velocity Measurement in Concrete)

  • 이준현;송원준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.544-550
    • /
    • 1997
  • In this study, the advanced on-sided stress wave velocity measurement method was applied to investigate the effects of composition, age and moisture content in concrete. Two concrete specimens that have different composition were used to figure out the change of the Longitudinal and Surface wave velocity due to different composition. The other concrete specimen was cast and the Longitudinal and Surface wave velocity was monitored during curing process. After 28-day old, the effect of moisture content in the concrete specimen to the stress wave velocity is presented in this paper during the time period 43-74 days after casting. For drying process. an aggregate drying oven was used. A conventional ultrasonic through transmission method was used to compare with the results determined by the one-sided method.

  • PDF

초음파를 이용한 중회귀분석법에 의한 콘크리트의 압축강도추정 (Estimate of Compressive Strength for Concrete using Ultrasonics by Multiple Regression Analysis Method)

  • 박익근;한응교;김완규
    • 비파괴검사학회지
    • /
    • 제11권2호
    • /
    • pp.22-31
    • /
    • 1991
  • Various types of ultrasonic techniques have been used for the estimation of compressive strength of concrete structures. However, conventional ultrasonic velocity method using only longitudial wave cannot be determined the compressive strength of concrete structures with accuracy. In this paper, by using the introduction of multiple parameter, e. g. velocity of shear wave, velocity of longitudinal wave, attenuation coefficient of shear wave, attenuation coefficient of longitudinal wave, combination condition, age and preservation method, multiple regression analysis method was applied to the determination of compressive strength of concrete structures. The experimental results show that velocity of shear wave can be estimated compressive strength of concrete with more accuracy compared with the velocity of longitudinal wave, accuracy of estimated error range of compressive strength of concrete structures can be enhanced within the range of ${\pm}$10% approximately.

  • PDF

콘크리트의 응력파 속도 측정을 위한 One-sided technique 개발 (Development of Advanced One-sided Stress Wave Velocity Measurement in Concrete)

  • 이준현;송원준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.537-543
    • /
    • 1997
  • A new procedure for the advanced one-side measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.

  • PDF

반 무한 복합체의 Rayleigh 표면파에 대한 이방성비의 영향 (Effect of Anisotropic Ratio for Rayleigh Wave of a Half-Infinite Composite Material)

  • 백운철;황재석;송용태
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.502-509
    • /
    • 2001
  • In this paper, when stress waves are propagated along the reinforced direction of the composite, the characteristic equation of Rayleigh wave is derived. The relationships between velocities of stress waves and Rayleigh wave are studied for anisotropic ratios(E(sub)11/E(sub)12 or E(sub)22/E(sub)11). The increments of anisotropic ratios is made by using known material properties and being constant of basic properties. When the anisotropic ratios are increased, Rayleigh wave velocities to the shear wave velocities are almost equal to 1 with any anisotropic ratios. Rayleigh wave velocities to the longitudinal wave velocities and Shear wave velocities ratio to the longitudinal wave velocities are almost identical each other, they are between 0.12 and 0.21. When the anisotropic ration is very high, that is, E(sub)11/E(sub)22=46.88, Rayleigh wave velocities and the shear wave velocities are almost constant with Poissons ratio, longitudinal wave velocities are very slowly increased with the increments of Poissons ratios. When E(sub)11(elastic modulus of the reinforced direction)and ν(sub)12 are constant, Rayleigh wave velocities and the shear wave velocities are steeply decreased with the increments of anisotropic ratios and the velocities of longitudinal wave are almost constant with them. When E(sub)22(elastic modulus of the normal direction to the fiber) and ν(sub)12 are constant, Rayeigh wave velocities is slowly increased with the increments of anisotropic ratios, the shear wave velocities are almost constant with them, the longitudinal wave velocities are steeply increased with them.

초음파 음속측정에 의한 응력평가에 관한 연구 (Stress Evaluation by Measuring Ultrasonic Velocity)

  • 이범성
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.138-144
    • /
    • 1999
  • Longitudinal wave and shear wave velocity changes of PMMA Polymer meterial under the the unidirection load were measured. The Third-order elastic modulus and acousto-elastic modulus of PMMA are obtained. The theoretical and experemental values of the velocity change of each wave by stress are compared each other and the validity of theoretical expression is examinated.

  • PDF

초기 재령 콘크리트의 종파 속도와 강도의 상관관계 (Correlation between Longitudinal Wave Velocity and Strength of Early-aged Concrete)

  • 이휘근;이광명;김동수
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.67-74
    • /
    • 2000
  • The usage of nondestructive testing on early-aged concrete leads to enhacned safty and allows effective scheduling of construction, thus making it possible to maximize the time and cost efficiencies. In this study, a reliable nondestructive strength evaluation method for early-aged concrete using the longitudinal wave velocity is proposed. Compression tests were performed to examine factors influencing the velocity-strength relationship of concrete, such as water-cement (w/c) ratio, fine aggregate ratio, curing temperature, and curing condition. The test results show that a change in the w/c ratio and curing temperature has minor effect on the velocity-strength relationship/ However, curing condition significantly influences the velocity-strength relationship of early-aged concrete. Moreover, the longitudinal wave velocity increases with decreasing fine aggregate ratio. It is concluded from this study that the strength evaluation of early-age concrete can be achieved by a nonlinear equation which considers the effects of curing condition and fine aggregate ratio.

Nondestructive Characterization of Materials Using Laser-Generated Ultrasound

  • Park, Sang-Woo;Lee, Joon-Hyun
    • International Journal of Reliability and Applications
    • /
    • 제5권1호
    • /
    • pp.1-13
    • /
    • 2004
  • It is recently well recognized that the technique for the one-sided stress wave velocity measurement in structural materials provides measurement in structural materials provides valuable information on the state of the material such as quality, uniformity, location of cracked or damaged area. This technique is especially effective to measure velocities of longitudinal and Rayleigh waves when access to only one surface of structure is possible. However, one of problems for one-sided stress wave velocity measurement is to get consistent and reliable source for the generation of elastic wave. In this study, the laser based surface elastic wave was used to provide consistent and reliable source for the generation of elastic wave into the materials. The velocities of creeping wave and Rayleigh wave in materials were measured by the one-sided technique using laser based surface elastic wave. These wave velocities were compared with bulk wave velocities such as longitudinal wave and shear wave velocities to certify accuracy of measurement. In addition, the mechanical properties such as poisson's ratio and specific modulus(E/p) were calculated with the velocities of surface elastic waves.

  • PDF

주변 흙의 특성이 물이 찬 매립된 배관에서 전파되는 기본 유도 종파 모드 감쇠에 미치는 영향 (Effect of Surrounding Soil Properties on the Attenuation of the First Guided Longitudinal Wave Mode Propagating in Water-filled, Buried Pipes)

  • 이주원;나원배;신성우;김재민
    • 한국해양공학회지
    • /
    • 제24권4호
    • /
    • pp.32-37
    • /
    • 2010
  • This study presents the attenuation characteristics of the first guided longitudinal wave mode propagating in water-filled, buried steel pipes in order to investigate the effects of soil saturation and compaction on the attenuation patterns. For numerical calculation of attenuation, 10 different combinations of S-wave velocity, P-wave velocity, and soil densities were considered. From the attenuation dispersion curves, which were obtained using Disperse software, we determined that the attenuation decreases as saturation increases, whereas it increases as compaction increases. Over the frequency range from 0.2 to 0.4 MHz, the first longitudinal wave mode has attenuations that are relatively lower than for other ranges, is faster than the first flexural wave mode, and is sensitive to defects aligned in the axial direction. Hence, the first longitudinal wave mode over the mentioned frequency range would be the proper choice for long-range buried pipelines that transport water.

초음파현미경을 이용한 Co 기 초내열 합금 열화재의 비파괴평가 (Nondestructive Evaluation for Thermally Degraded Co-base Superalloy by Scanning Acoustic Microscope)

  • 김정석;송진헌;권숙인;임재생;박익근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.336-341
    • /
    • 2004
  • This research investigates the feasibility of ultrasonic microscope for nondestructive assessment of thermal degradation in artificially aged commercial Co-base superalloy, FSX414. This alloy has been used for high temperature structure applications such as stationary gas turbine blade and nozzle chamber in fossil plant. Microstructural change was found that the fine carbides became coarser and spheroidized in matrix as aging time increased. The leaky surface acoustic wave velocity gradually decreases by a maximum of 4.7% with increasing aging time up to 4,000hours. However, the longitudinal wave velocity has a little change. Also, it has a good correlation between leaky surface acoustic wave velocity and Vickers hardness. Consequently, LSAW can be used to examine the degree of degradation in thermally aged Co-base superalloy.

  • PDF