• Title/Summary/Keyword: longitudinal direction

Search Result 819, Processing Time 0.034 seconds

Capillary Flow in Different Cells of Thuja orientalis, Gmelina arborea, Phellodendron amurense

  • Chun, Su Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.3
    • /
    • pp.248-258
    • /
    • 2017
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood Thuja orientalis L., diffuse-porous wood Gmelina arborea Roxb., and ring-porous wood Phellodendron amurense Rupr., Longitudinal flow was considered from bottom to top while the radial flow was considered from bark to pith directions. In radial direction, ray cells and in longitudinal direction tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents(MC). The variation of penetration speed for different species was observed and the reasons behind for this variation were explored. The highest radial penetration depth was found in ray parenchyma of T. orientalis but the lowest one was found in ray parenchyma of P. amurense. The average liquid penetration depth in longitudinal trachied of T. orientalis was found the highest among all the other cells. The penetration depth in fiber of G. arborea was found the lowest among the other longitudinal cells. It was found that cell dimension and also meniscus angle of safranine solution with cell walls were the prime factors for the variation of liquid flow speed in wood. Vessel was found to facilitate prime role in longitudinal penetration for hardwood species. The penetration depth in vessel of G. arborea was found highest among all vessels. Anatomical features like ray parenchyma cell length and diameter, end-wall pits number were found also responsible fluid flow differences. Initially liquid penetration speed was high and the nit gradually decreased in an uneven rate. Liquid flow was captured via video and the penetration depths in those cells were measured. It was found that even in presence of abundant rays in hardwood species, penetration depth of liquid in radial direction of softwood species was found high. Herein the ray length, lumen area, end wall pit diameter determined the radial permeability. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Following a go-stop-go cycle, the penetration speed of a liquid decreased over time.

Fatigue Strength Evaluation of Welded Box Type with HR Coil (HR Coil재 Box형 용접구조물의 피로강도평가에 관한 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun;Jang, Yong-Won;Lee, Jin-Woo
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.20-24
    • /
    • 2005
  • Due to the difficulties associated with the supply of steel plates, hot rolled coil (Steel grade: SM490A) is considered fur structural materials in replace of the existing SWS50A-M1. However, it is found that SM490A exhibits a significant anisotropy in terms of impact energy with respect to transverse and longitudinal directions. In this study, an experimental investigation is carried out to examine the relationship between the anisotropy in impact values and the fatigue strengths of SM490A with respect to the rolling direction of test specimens. All test specimens failed around 1,500,000 cycles regardless of the test specimen direction. Therefore, it is found that the anisotropy in impact energy is not related to the fatigue strength of the materials considered in this study. However, the transverse direction specimen showed more rapid brittle fracture mode compared to that of longitudinal direction specimen, and this appears to be related to the lower impact values in transverse direction.

Experimental Study on the Material Characteristics of Glass Fiber Composties (유리섬유복합재료의 재료특성에 관한 실험적 연구)

  • Park, Jong-Myen;Seo, Hyun-Su;Kwon, Min-Ho;Lim, Jeong-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • In the study, tensile, compression and in-plane tests about longitudinal direction of glass fiber were performed. Also, to obtain the material properties of GFRP fabric composite, tensile test was performed. All test were performed by the test method of ASTM. Maximum compressive strength was smaller than the maximum tensile strength at the longitudinal direction test results. Elastic modulus of the tensile and compressive was almost similar at the compression test results in the longitudinal direction. Based on the GFRP fabric composite test results, GF91 was showed good performance at maximum compressive, maximum strain and elastic modulus.

Effects of a Degree of Discretization in the Direction of Longitudinal Dam Axis on the Results of 3-D Fill Dam Response Analysis (댐 축방향 분할도가 3차원 필댐 지진응답해석 결과에 미치는 영향)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.72-83
    • /
    • 2009
  • The purpose of this study is to examine the effects of a degree of discretization in the direction of longitudinal dam axis on the results of three dimensional fill dam dynamic analysis. In this study, the three dimensional dynamic analyses of the existing 'H' dam which is modeled with a different degree of discretization were carried out. From these results, the fundamental frequency of the dam and the responses at the dam crest such as acceleration and settlement were compared and analyzed. It was concluded that the size of finite element discretized in the direction of the longitudinal axis mush be smaller than 1/8 of dam length in order to obtain the reasonable fundamental frequency and response of acceleration and mush be smaller than 1/10 in order to obtain the reasonable settlement behaviors from the three dimensional dynamic analysis of the fill dam.

  • PDF

Evaluation of long term behavior of steel plate girder bridges with precast concrete decks (프리캐스트 바닥판을 사용한 강합성거더교의 장기기동 해석)

  • Kim, Su-Hyun;Lee, Jong-Min;Cho, Sun-Kyu;Go, Dong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1326-1331
    • /
    • 2006
  • The precast concrete deck is one of suitable solutions for replacement and new construction in urban area. However, the precast concrete deck could be a weak point of the steel plate girder bridges structurally due to the connections between precast panels in the longitudinal direction. Thereafter, it is necessary for improvement of durability and load carrying capacity to introduce the prestress force in the longitudinal direction Some cracks of connections at the precast concrete deck may be occurred due to live loads, the difference of temperature and long-term effects. The shrinkage and creep of concrete may significantly affect long-term behaviors which occur tensile stresses at the precast concrete deck of steel plate girder bridges. In this study, the time-dependant analysis program has been developed to determine the initial prestress force in the longitudinal direction considering loss of stress at the precast concrete deck. Also it has been estimated the initial prestress force by construction stages and shapes of girder.

  • PDF

A Study on Stress Wave Propagation by Finite Element Analysis (유한요소법에 의한 2차원 응력파 전파 해석에 관한 연구)

  • 황갑운;조규종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3369-3376
    • /
    • 1994
  • A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field and analysis the magnitude of stress wave intensity at time increment. Accuracy and reliance of the finite element analysis are acquired when the element size is smaller than the product of the stress wave speed and the critical value of increasing time step. In the finite element analysis and theoretical solution, the longitudinal stress wave is propagated to the similar direction of impact load, and the stress wave intensity is expressed in terms of the ratio of propagated area. The direction of shear wave is declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is half of the longitudinal stress wave.

Longitudinal Flow Path of Safranine in Populus tomentiglandulosa T. Lee

  • Choi, In-Sik;Ahmed, Sheikh Ali;Chun, Su-Kyoung
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.2
    • /
    • pp.161-165
    • /
    • 2007
  • An experiment was conducted to observe the safranine flow depth in longitudinal direction of Populus tomentiglandulosa. Longitudinal flow of safranine was considered from bottom to top end of the tree. Vessel and wood fiber were considered for the measurement of safranine flow depth. It was found that sapwood conducted safranine 12.25% higher in longitudinal direction compared with heartwood. Vessel was found the main avenue for safranine flow. Vessel conducted safranine 41.94% higher than that of wood fiber. Safranine penetrated through vessel and fiber forming a curved meniscus.

  • PDF

Comparison of Tunnel's Deformation by Spatially Variable Ground Motion (공간적으로 변이하는 지진파에 의한 터널의 변형 비교)

  • Kwak, Dong-Yeop;Ahn, Jae-Kwang;Park, Du-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.265-268
    • /
    • 2008
  • The safety of a tunnel under seismic motion is most often evaluated by ovalling deformation of tunnel. This paper research about tunnel's longitudinal deformation. Because of spatial variation of seismic ground motion, the longitudinal structures like tunnel are likely to experience relative displacements along longitudinal direction. The spatially variable ground motion can be estimated by coherency function obtained empirically, and can be considered from different arrival times of ground motion. As a result of estimating tunnel's relative displacements at maximum curvature of tunnel, the displacements and curvatures estimated by coherency function affect the tunnel's safety more than different arrival times. However, if tunnel's displacements by coherency function superpose on displacements by different arrival times, the relative displacements and curvatures of tunnel will be more severe. Therefore, to estimate accurately tunnel's deformation in longitudinal direction has to consider both coherency and wave passage effects.

  • PDF

The Characteristics of Acoustic Emission Signal under Composite Destruction on GFRP Gas Cylinder (유리섬유강화 복합재료 가스실린더의 복합재료 파괴시 발생하는 음향방출 특성)

  • Jee, Hyun-Sup;Lee, Jong-O;Ju, No-Hoe;So, Cheal Ho;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.430-435
    • /
    • 2013
  • This study is investigation of the characteristics for acoustic emission signal generated by destruction on glass fiber bundles and specimen that was machined composite materials surrounding the outside of GFRP cylinder. The Amplitude of acoustic emission signal gets bigger as the cutting angle of knife increases. Accordingly, the number of hits in destruction of composite materials specimen have more in longitudinal direction (longitudinal direction to the glass fiber) than in hoop direction (horizontal direction to the glass fiber) while the amplitude of signals were bigger in hoop direction than longitudinal direction. It was found out that the amplitude of the glass fiber breakage is more than 40 dB and that the amplitude of signal for matrix crack was less than 40 dB because matrix crack signal was not observed when threshold value is 40 dB and matrix crack signal suddenly appered when threshold value is 32 dB. The slope of the amplitude is related to the acoustic emission source and the slope of the amplitude of the horizontal and vertical directions are 0.16 and 0.08. In particular, The slope of the amplitude of longitudinal direction breakage appear similar to the glass fiber breakage and therefore Acoustic emission source of longitudinal direction breakage is estimated the glass fiber breakage.

Statistical Analysis of Transverse Load Effects in Girder Bridges (거더교량의 횡방향 하중효과의 확률론적 분석)

  • Oh, Byung-Hwan;Lew, Young;Choi, Young-Chul;Lee, Jun-Hyuk;Kim, Kwang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.859-864
    • /
    • 2001
  • An effective live load model for analyzing probable maximum live load effects such as moment and shear in transverse direction was developed. The main procedure of this live load model is composed of four parts, i.e., firstly, determination of the appropriate influence lines in longitudinal direction, secondly, application of the characteristics of vehicles and traffic patterns in longitudinal direction, thirdly, determination of the appropriate influence lines in transverse direction, and fourthly, application of the characteristics of vehicles and traffic patterns in transverse direction. Through this procedure, the probabilistic distributions of maximum probable load effects are deduced in the form of probability density function (PDF) and/or cumulative density function(CDF). This live load model is able to consider local or global deterioration of bridges in the structural analysis.

  • PDF