• 제목/요약/키워드: longitudinal control

검색결과 794건 처리시간 0.028초

군집주행의 종방향 제어를 위한 비선형 제어기 성능 비교 평가 (Comparative Performance Evaluation of Nonlinear Controllers for Longitudinal Control in a Vehicle Platooning)

  • 전성민;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.218-218
    • /
    • 2000
  • Advanced Vehicle Control Systems(AVCS) is one of the key elements in Intelligent Transportation Systems(ITS). This paper considers the problem of longitudinal control in vehicle platoon on a straight lane of a highway. In a very simplified situation, longitudinal vehicle dynamics contains many nonlinear elements. The nonlinear characteristics are mainly composed of an engine, a torque converter, and a drag force. In this paper, sliding control, one of nonlinear control methods, is applied to longitudinal automated vehicle control for platooning. Output feedback linearization is also simulated for comparison with the sliding control. Simulations for comparative study for the adopted controllers such as sliding control and output feedback linearization are peformed under the same conditions. This Paper aims at clarifying the characteristics of sliding control and output feedback linearization.

  • PDF

T-50 세로축 비행제어법칙 설계에 관한 연구 (A Study on the Longitudinal Flight Control Law of T-50)

  • 황병문;김성준;김종섭
    • 제어로봇시스템학회논문지
    • /
    • 제11권11호
    • /
    • pp.963-969
    • /
    • 2005
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modem version supersonic jet fighter aircraft. The flight control system utilizes RSS criteria in both longitudinal and lateral-directional axes to achieve performance enhancements and improve stability. The T-50 advanced trainer employs the RSS concept in order to improve the aerodynamic performance and the flight control law in order to guarantee aircraft stability, The T-50 longitudinal control laws employ the dynamic inversion and proportional-plus-integral control method. This paper details the design process of developing longitudinal control laws for the RSS aircraft, utilizing the requirement of MIL-F-8785C. In addition, This paper addresses the analysis of aircraft characteristics such as damping, natural frequency, gain and phase margin about state variables for longitudinal inner loop feedback design.

Test Bed for Vehicle Longitudinal Control Using Chassis Dynamometer and Virtual Reality: An Application to Adaptive Cruise Control

  • Mooncheol Won;Kim, Sung-Soo;Kang, Byeong-Bae;Jung, Hyuck-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1248-1256
    • /
    • 2001
  • In this study, a test bed for vehicle longitudinal control is developed using a chassis dynamometer and real time 3-D graphics. The proposed test bed system consists of a chassis dynamometer on which test vehicle can run longitudinally, a video system that shows virtual driver view, and computers that control the test vehicle and realize the real time 3-D graphics. The purpose of the proposed system is to test vehicle longitudinal control and warning algorithms such as Adaptive Cruise Control(ACC), stop and go systems, and collision warning systems. For acceleration and deceleration situations which only need throttle movements, a vehicle longitudinal spacing control algorithm has been tested on the test bed. The spacing control algorithm has been designed based on sliding mode control and road grade estimation scheme which utilizes the vehicle engine torque map and gear shift information.

  • PDF

A Study on Longitudinal Phugoid Mode Affected by Application of Nonlinear Control Laws

  • Kim, Chong-Sup;Hur, Gi-Bong;Kim, Seung-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.21-31
    • /
    • 2007
  • Relaxed Static Stability (RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. The T-50 advanced supersonic trainer employs the RSS concept in order to improve the aerodynamic performance. And the flight control system stabilizes the unstable aircraft and provides adequate handling qualities. The T-50 longitudinal control laws employ a proportional-plus-integral type controller based on a dynamic inversion method. The longitudinal dynamic modes consist of short period with high frequency and phugoid mode with low frequency. The design goal of longitudinal control law is optimization of short period damping ratio and frequency using Lower Order Equivalent System (LOES) complying the requirement of MIL-F-8785C. This paper addresses phugoid mode characteristics such as damping ratio and natural frequency that is affected by the nonlinear control laws such as angle of attack limiter, auto pitch attitude command system and autopilot of pitch attitude hold.

자율주행 자동차의 제어권 전환 시간 확보를 위한 차간 통신 기반 종방향 제어 알고리즘 개발 (Development of a Longitudinal Control Algorithm based on V2V Communication for Ensuring Takeover Time of Autonomous Vehicle)

  • 이혜원;송태준;윤영민;오광석;이경수
    • 자동차안전학회지
    • /
    • 제12권1호
    • /
    • pp.15-25
    • /
    • 2020
  • This paper presents a longitudinal control algorithm for ensuring takeover time of autonomous vehicle using V2V communication. In the autonomous driving of more than level 3, autonomous systems should control the vehicles by itself partially. However if the driver's intervention is required for functional safety, the driver should take over the control reasonably. Autonomous driving system has to be designed so that drivers can take over the control from autonomous vehicle reasonably for driving safety. In this study, control algorithm considering takeover time has been developed based on computation method of takeover time. Takeover time is analysed by conditions of longitudinal velocity of preceding vehicle in time-velocity plane. In addition, desired clearance is derived based on takeover time. The performance evaluation of the proposed algorithm in this study was conducted using 3D vehicle model with actual driving data in Matlab/Simulink environment. The results of the performance evaluation show that the longitudinal control algorithm can control while securing takeover time reasonably.

항공기 종 제어를 위한 Interval Type-2 퍼지논리 제어시스템 (Interval Type-2 Fuzzy Logic Control System of Flight Longitudinal Motion)

  • 조영환;이홍기;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.168-173
    • /
    • 2015
  • 비행 시 외부 조건에 따라 비선형시변 동적특성을 갖는 항공기의 비행제어는 종 제어(longitudinal control)와 횡 제어(lateral control)로 나눌 수 있으며, 종 제어는 승강키(elevator)에 의한 피치(pitch)값, 횡 제어는 에일러론(aileron)에 의한 롤(roll)값과 방향키(rudder)에 의한 요(yaw)값들을 제어대상으로 삼는다. 현재까지 항공기의 안정성, 조종성 그리고 기동성을 보장하기 위한 제어시스템 개발에 많은 연구들이 활발히 진행되어 왔으나, 최근에는 다양하고 복잡한 풍동실험과 환경실험들을 필요로 하는 기존연구들과는 다른 항공기의 지능제어시스템 개발에 관련된 연구들이 이루어지고 있다. 본 논문은 대표적인 지능제어방식인 Interval Type-2 퍼지논리기법에 의한 항공기 종 제어시스템을 제시하고 F-4 제트전투기의 컴퓨터 모의실험을 통해 그 효용성을 입증한다.

종파 분리 방법을 이용한 파동 관점의 능동 진동 제어 (Study on active vibration control based on wave viewpoint using the longitudinal wave separation method)

  • 정병보;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.928-933
    • /
    • 2007
  • In this research, we investigated active vibration control based on wave-viewpoint using the longitudinal wave separation method. The control strategy is the one of active vibration control technique for generating vibration reduced zone and uses wave information including the directivity as the cost function. In order to get the wave information from the measured values, we proposed and examined the time-domain longitudinal wave separation method proper to real time application like active vibration control. Using the proposed method, we examine the performance and feasibility of active vibration control based wave view-point through the simulation. The related experimental verification and application is going to be expected in a near future.

  • PDF

젯트팬 종류식 터널의 퍼지응용 제어로직에 관한 연구 (The Study of Jet Fan Control Logic for Longitudinal Ventilation in Road Tunnel)

  • 유지오;남창호;신현준
    • 설비공학논문집
    • /
    • 제12권8호
    • /
    • pp.763-770
    • /
    • 2000
  • In tunnel ventilation, the Purpose of ventilation control is to keep the required pollution level with minimum consumption of energy But tunnel ventilation has large disturbances caused by discharge of pollutants, traffic forces especially strong for longitudinal ventilation. Hence in this paper, the tunnel ventilation control logic applying fuzzy control theories is proposed and the simulation program of tunnel ventilation control is developed. The characteristics of longitudinal ventilation with jet fans are estimated and the effect of the proposed tunnel ventilation control is verified by the simulation program.

  • PDF

적응형 되먹임 기반 종방향 자율주행 구동기 고장 탐지 및 허용 제어 알고리즘 개발 (Development of an Adaptive Feedback based Actuator Fault Detection and Tolerant Control Algorithms for Longitudinal Autonomous Driving)

  • 오광석;이종민;송태준;오세찬;이경수
    • 자동차안전학회지
    • /
    • 제12권4호
    • /
    • pp.13-22
    • /
    • 2020
  • This paper presents an adaptive feedback based actuator fault detection and tolerant control algorithms for longitudinal functional safety of autonomous driving. In order to ensure the functional safety of autonomous vehicles, fault detection and tolerant control algorithms are needed for sensors and actuators used for autonomous driving. In this study, adaptive feedback control algorithm to compute the longitudinal acceleration for autonomous driving has been developed based on relationship function using states. The relationship function has been designed using feedback gains and error states for adaptation rule design. The coefficients in the relationship function have been estimated using recursive least square with multiple forgetting factors. The MIT rule has been adopted to design the adaptation rule for feedback gains online. The stability analysis has been conducted based on Lyapunov direct method. The longitudinal acceleration computed by adaptive control algorithm has been compared to the actual acceleration for fault detection of actuators used for longitudinal autonomous driving.

Longitudinal Spacing Control of Vehicles in a Platoon

  • No, Tae-Soo;Chong, Kil-To
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.92-97
    • /
    • 2000
  • The Lyapunov stability theorem is used to derive a control law that can be used to control the spacing between vehicles in a platoon. A third order system is adopted to model the vehicle and power-train dynamics. In addition, the concept of

  • PDF