• Title/Summary/Keyword: long-term simulation

Search Result 762, Processing Time 0.023 seconds

An Energy Aware Source Routing with Disjoint Multipath Selection for Wireless Sensor Networks (무선 센서네트워크에서 다중 경로 선정에 기반한 에너지 인식 소스 라우팅 프로토콜)

  • Hwang Do-youn;Lim Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.23-29
    • /
    • 2006
  • In wireless sensor networks(WSNs), it is crucial to maintain network connectivity as long as possible since nodes are battery-powered and unchange-able. We propose a new routing protocol called Energy Aware Source Routing(EASR) which can be efficient in respect of network lifetime and long-term connectivity. Our protocol is multipath source routing, only one path will be selected at the same time and each path has probability to be selected like as Energy Aware Routing(EAR) protocol. The route discovery procedure of EASR protocol is reformed from the route discovery procedure of Split Multipath Routing(SMR) protocol. However, there is the difference between SMR and EASR. In EASR, we define an overhearing ratio in order to reduce energy waste due to overhearing effect among each selected path. Thus, we can establish energy efficient multiple paths by making use of overhearing ratio. The simulation results are also demonstrated that our scheme increases in network lifetimes, and achieves reasonable packet latency time.

Adaptive OFDMA with Partial CSI for Downlink Underwater Acoustic Communications

  • Zhang, Yuzhi;Huang, Yi;Wan, Lei;Zhou, Shengli;Shen, Xiaohong;Wang, Haiyan
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.387-396
    • /
    • 2016
  • Multiuser communication has been an important research area of underwater acoustic communications and networking. This paper studies the use of adaptive orthogonal frequency-division multiple access (OFDMA) in a downlink scenario, where a central node sends data to multiple distributed nodes simultaneously. In practical implementations, the instantaneous channel state information (CSI) cannot be perfectly known by the central node in time-varying underwater acoustic (UWA) channels, due to the long propagation delays resulting from the low sound speed. In this paper, we explore the CSI feedback for resource allocation. An adaptive power-bit loading algorithm is presented, which assigns subcarriers to different users and allocates power and bits to each subcarrier, aiming to minimize the bit error rate (BER) under power and throughput constraints. Simulation results show considerable performance gains due to adaptive subcarrier allocation and further improvement through power and bit loading, as compared to the non-adaptive interleave subcarrier allocation scheme. In a lake experiment, channel feedback reduction is implemented through subcarrier clustering and uniform quantization. Although the performance gains are not as large as expected, experiment results confirm that adaptive subcarrier allocation schemes based on delayed channel feedback or long term statistics outperform the interleave subcarrier allocation scheme.

Multicast Coverage Prediction in OFDM-Based SFN (OFDM 기반의 SFN 환경에서의 멀티캐스트 커버리지 예측)

  • Jung, Kyung-Goo;Park, Seung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.205-214
    • /
    • 2011
  • In 3rd generation project partnership long term evolution, wireless multicast techniques which send the same data to multiple users under single frequency networks have attracted much attention. In the multicast system, the transmission mode needs to be selected for efficient data transfer while satisfying the multicast coverage requirement. To achieve this, users' channel state information (CSI) should be available at the transmitter. However, it requires too much uplink feedback resource if all the users are allowed to transmit their CSI at all the time. To solve this problem, in this paper, the multicast coverage prediction is suggested. In the proposed algorithm, each user measures its transition probabilities between the success and the fail state of the decoding. Then, it periodically transmits its CSI to the basestation. Using these feedbacks, the basestation can predict the multicast coverage. From the simulation results, we demonstrate that the proposed scheme can predict the multicast system coverage.

A Call Admission Control Algorithm in 3GPP LTE System for Guarantee of Packet Delay (패킷 지연 보장을 위한 LTE 시스템의 호 수락 제어 알고리즘)

  • Bae, Sueng-Jae;Choi, Bum-Gon;Lee, Jin-Ju;Kwon, Sung-Oh;Chung, Min-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.458-467
    • /
    • 2009
  • Long Tenn Evolution (LTE) is the next generation mobile phone technology which has being standardized by the Third Generation Partnership Project (3GPP). In the existing mobile communication networks, voice traffic is delivered through circuit switched networks. In LTE, however, all kinds of traffic are transferred through IP based packet switched networks which has best-effort characteristic. Therefore, providing QoS in LTE system is difficult. In order to provide QoS in LTE, RRM is very important. Especially, in part of RRM, call admission control (CAC) performs an important function to reduce network congestion and guarantee a certain level of QoS for on-going calls. In this paper, we propose a CAC algorithm in order to provide QoS for various kinds of services in LTE system. The performance of the proposed algorithm is evaluated with various simulation environments. The results show that the proposed algorithm provides QoS through rejections of requested calls. Especially, the proposed CAC algorithm can be satisfied with packet delay requirement defined in LTE specification.

Exploring the Effectiveness of GAN-based Approach and Reinforcement Learning in Character Boxing Task (캐릭터 복싱 과제에서 GAN 기반 접근법과 강화학습의 효과성 탐구)

  • Seoyoung Son;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.4
    • /
    • pp.7-16
    • /
    • 2023
  • For decades, creating a desired locomotive motion in a goal-oriented manner has been a challenge in character animation. Data-driven methods using generative models have demonstrated efficient ways of predicting long sequences of motions without the need for explicit conditioning. While these methods produce high-quality long-term motions, they can be limited when it comes to synthesizing motion for challenging novel scenarios, such as punching a random target. A state-of-the-art solution to overcome this limitation is by using a GAN Discriminator to imitate motion data clips and incorporating reinforcement learning to compose goal-oriented motions. In this paper, our research aims to create characters performing combat sports such as boxing, using a novel reward design in conjunction with existing GAN-based approaches. We experimentally demonstrate that both the Adversarial Motion Prior [3] and Adversarial Skill Embeddings [4] methods are capable of generating viable motions for a character punching a random target, even in the absence of mocap data that specifically captures the transition between punching and locomotion. Also, with a single learned policy, multiple task controllers can be constructed through the TimeChamber framework.

Modeling Soil Temperature of Sloped Surfaces by Using a GIS Technology

  • Yun, Jin I.;Taylor, S. Elwynn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.113-119
    • /
    • 1998
  • Spatial patterns of soil temperature on sloping lands are related to the amount of solar irradiance at the surface. Since soil temperature is a critical determinant of many biological processes occurring in the soil, an accurate prediction of soil temperature distribution could be beneficial to agricultural and environmental management. However, at least two problems are identified in soil temperature prediction over natural sloped surfaces. One is the complexity of converting solar irradiances to corresponding soil temperatures, and the other, if the first problem could be solved, is the difficulty in handling large volumes of geo-spatial data. Recent developments in geographic information systems (GIS) provide the opportunity and tools to spatially organize and effectively manage data for modeling. In this paper, a simple model for conversion of solar irradiance to soil temperature is developed within a GIS environment. The irradiance-temperature conversion model is based on a geophysical variable consisting of daily short- and long-wave radiation components calculated for any slope. The short-wave component is scaled to accommodate a simplified surface energy balance expression. Linear regression equations are derived for 10 and 50 cm soil temperatures by using this variable as a single determinant and based on a long term observation data set from a horizontal location. Extendability of these equations to sloped surfaces is tested by comparing the calculated data with the monthly mean soil temperature data observed in Iowa and at 12 locations near the Tennessee - Kentucky border with various slope and aspect factors. Calculated soil temperature variations agreed well with the observed data. Finally, this method is applied to a simulation study of daily mean soil temperatures over sloped corn fields on a 30 m by 30 m resolution. The outputs reveal potential effects of topography including shading by neighboring terrain as well as the slope and aspect of the land itself on the soil temperature.

  • PDF

A Study on the Water Quality Simulation in the Midstream and Downstream of Geum-River (금강 중하류에서의 수질모의에 관한 연구)

  • Sin, Jae-Gi;Im, Chang-Su
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.145-157
    • /
    • 2000
  • The Water Quality Analysis Simulation Program 5 (WASP5) and HEC-2 models have been coupled and applied to find the possibility of simulation of long-term river water quality variation. The EUTR05 as a simulator of water quality simulation in WASPS model was used to simulate the water quality variables in the downstream of Geum-River from Daechung multi-purpose dam during the dry period. The water quality and flow rate conditions have been measured at the stage measurement stations located in the downstream of Geum-River from Daechung dam in December, 1998 and January and March, 1999. The water quality simulation model was calibrated with January data of 1999, and verified with December data of 1998 and March data of 1999. The trend of longitudinal variation of water quality variables simulated by model is consistent with that of measured water quality constituents except chlorophyll-a, $BOD_5,\;NH_3-N\;and\;PO_4-P$ simulated with March data of 1999. Furthennore, the chlorophyll a concentration in the mainstream of Geum-River was simulated by changing the concentrations of $PO_4-P$ and/or $NH_4-N$ flowing into the mainstream of Geum-River from Gabcheon and Mihocheon. The variation of chlorophyll a concentration in the mainstream was almost ignorable except only when $NH_3-N\;and\;PO_4-P$ concentrations decreased by 70% flow into the mainstream from Gabcheon and Mihocheon.

  • PDF

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

A Study on the Changes of Water Quality due to the Development of Harbor and its Improvement (항만개발에 따른 수질변화 및 개선책에 관한 연구)

  • 국승기;이중우;최성용;김강민
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.123-132
    • /
    • 1999
  • It is very important to quantitatively assess the movement of sea water and pollutant dispersion before or after constructing shore structures such as breakwater considering marine environment and long-term utilization of those structures. This assesment is possible through the use of simulation models designed to predict water movement and pollutant dispersion in a certain area. In this study the numerical computations were carried out to predict the sea water quality in the Ilgwang Harbor located at the east coast of Pusan. The flow patters were investigated before and after the development of Ilgwang Harbor. The computational models adopting ADI Method (Alternating Direction Implicit Method) were used here and were already verified from the previous studies. As a results of this study the tidal exchange in Ilgwang Harbor after development proved to be worse due to the increased semi-enclosed at the harbor limit. In order to improve the water quality of this area after development a new method was proposed to improve water quality in the semi-enclosed bay by creation and control of tidal residual currents. For this purpose the unsymmetric structures so called bottom roughness were introduced in this study. The simulation was carried out on the basis of the study by Komatsu et. al. and Gug and we made a conclusion that it is possible to generate a new tidal residual current and to increase the tidal exchange by application of bottom roughness arrangement.

  • PDF

Development of Hydrologic Simulation Model to Predict Flood Runoff in a Small Mountaineous Watershed (산지 소유역의 홍수유출 예측을 위한 모의발생 수문모형의 개발)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.58-68
    • /
    • 1988
  • Most of the Korean watersheds are mountaineous and consist of various soil types and land uses And seldom watersheds are found to have long term hydrologic records. The SNUA, a hydrologic watershed model was developed to meet the unique characteristics of Korean watershed and simulate the storm hydrographs from a small mountaineous watershed. Also the applicability of the model was tested by comparing the simulated storm hydrographs and the observed from Dochuk watershed, Gwangjugun, Kyunggido The conclusions obtained in this study could be summarized as follows ; 1. The model includes the simulation of interception, evaporation and infiltration for land surface hydrologic cycle on the single storm basis and the flow routing features for both overland and channel systems. 2. Net rainfall is estimated from the continuous computation of water balance at the surface of interception storage accounting for the rainfall intensities and the evaporation losses at each time step. 3. Excess rainfall is calculated by the abstraction of infiltration loss estimated by the Green and Ainpt Model from the net rainfall. 4. A momentum equation in the form of kinematic wave representation is solved by the finite differential method to obtain the runoff rate at the exit of the watershed. 5. The developed SNUA Model is a type of distributed and event model that considers the spatial distribution of the watershed parameters and simulates the hydrograph on a single storm basis. 6. The results of verification test show that the simulated peak flows agree with the observed in the occurence time but have relative enors in the range of 5.4-40.6% in various flow rates and also show that the simulated total runoff have 6.9-32% of relative errors against the observed. 7. To improve the applicability of the model, it was thought that more studies like the application test to the other watersheds of various types or the addition of the other hydrologk components describing subsurface storages are needed.

  • PDF