• 제목/요약/키워드: long-term forecasts

검색결과 97건 처리시간 0.023초

Dynamic Model of a Long-term Water Demand Using System Dynamics (시스템 다이나믹스를 이용한 도시 물수요 장기 예측의 동적 모델 연구)

  • Lee, Sangeun;Choi, Dongjin;Park, Heekyungh
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제21권1호
    • /
    • pp.75-82
    • /
    • 2007
  • When one forecasts urban water demand in a long-term, multivariate model can give more benefits than per capita requirement model. However, the former has shortcomings in that statistically high explanatory power cannot be obtained well, and change in customer behavior cannot be considered. If the past water consumption effects the future water demand, dynamic model may describe real water consumption data better than static model, i.e. the existing multivariate model. On these grounds, this study built dynamic model using system dynamics. From a case study in Seoul and Busan city, dynamic model was expected to forecast water demand more descriptively and reliably.

Extended Forecasts of a Stock Index using Learning Techniques : A Study of Predictive Granularity and Input Diversity

  • Kim, Steven H.;Lee, Dong-Yun
    • Asia pacific journal of information systems
    • /
    • 제7권1호
    • /
    • pp.67-83
    • /
    • 1997
  • The utility of learning techniques in investment analysis has been demonstrated in many areas, ranging from forecasting individual stocks to entire market indexes. To date, however, the application of artificial intelligence to financial forecasting has focused largely on short predictive horizons. Usually the forecast window is a single period ahead; if the input data involve daily observations, the forecast is for one day ahead; if monthly observations, then a month ahead; and so on. Thus far little work has been conducted on the efficacy of long-term prediction involving multiperiod forecasting. This paper examines the impact of alternative procedures for extended prediction using knowledge discovery techniques. One dimension in the study involves temporal granularity: a single jump from the present period to the end of the forecast window versus a web of short-term forecasts involving a sequence of single-period predictions. Another parameter relates to the numerosity of input variables: a technical approach involving only lagged observations of the target variable versus a fundamental approach involving multiple variables. The dual possibilities along each of the granularity and numerosity dimensions entail a total of 4 models. These models are first evaluated using neural networks, then compared against a multi-input jump model using case based reasoning. The computational models are examined in the context of forecasting the S&P 500 index.

  • PDF

An Economic Feasibility Study for Construction and Use of Korea Ocean Research Stations (종합해양과학기지 구축 및 활용의 경제성 분석)

  • Song, Sang-Hwa;Shin, Kwang-Sup;Kim, Jae-Gon;Jeong, Jin-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제38권1호
    • /
    • pp.52-64
    • /
    • 2015
  • Korea ocean research stations manage the weather and environmental data collected from coastal and ocean areas to provide short-term and long-term ocean forecasts. The purpose of this paper is to analyze and quantify economic benefits of the ocean research stations with sensors to observe physical, chemical, and biological data. The construction and operation of an integrated ocean observation station is expected to reduce uncertainty about ocean and coastal areas and to improve the quality of ocean forecasts. The economic benefits are mainly come from improved search and rescue operations, ocean pollution management, yellow dust management, and improved productivity in ocean-related industries. In addition, an input-output analysis is performed to evaluate the economic impacts of ocean research stations nationwide. The analysis shows that the system can contribute to industries such as fishing, maritime and air cargo, medical and health care.

Forecasting of Seasonal Inflow to Reservoir Using Multiple Linear Regression (다중선형회귀분석에 의한 계절별 저수지 유입량 예측)

  • Kang, Jaewon
    • Journal of Environmental Science International
    • /
    • 제22권8호
    • /
    • pp.953-963
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. Forecasting of seasonal inflow to Andong dam is performed and assessed using statistical methods based on hydrometeorological data. Predictors which is used to forecast seasonal inflow to Andong dam are selected from southern oscillation index, sea surface temperature, and 500 hPa geopotential height data in northern hemisphere. Predictors are selected by the following procedure. Primary predictors sets are obtained, and then final predictors are determined from the sets. The primary predictor sets for each season are identified using cross correlation and mutual information. The final predictors are identified using partial cross correlation and partial mutual information. In each season, there are three selected predictors. The values are determined using bootstrapping technique considering a specific significance level for predictor selection. Seasonal inflow forecasting is performed by multiple linear regression analysis using the selected predictors for each season, and the results of forecast using cross validation are assessed. Multiple linear regression analysis is performed using SAS. The results of multiple linear regression analysis are assessed by mean squared error and mean absolute error. And contingency table is established and assessed by Heidke skill score. The assessment reveals that the forecasts by multiple linear regression analysis are better than the reference forecasts.

A Multiple Variable Regression-based Approaches to Long-term Electricity Demand Forecasting

  • Ngoc, Lan Dong Thi;Van, Khai Phan;Trang, Ngo-Thi-Thu;Choi, Gyoo Seok;Nguyen, Ha-Nam
    • International journal of advanced smart convergence
    • /
    • 제10권4호
    • /
    • pp.59-65
    • /
    • 2021
  • Electricity contributes to the development of the economy. Therefore, forecasting electricity demand plays an important role in the development of the electricity industry in particular and the economy in general. This study aims to provide a precise model for long-term electricity demand forecast in the residential sector by using three independent variables include: Population, Electricity price, Average annual income per capita; and the dependent variable is yearly electricity consumption. Based on the support of Multiple variable regression, the proposed method established a model with variables that relate to the forecast by ignoring variables that do not affect lead to forecasting errors. The proposed forecasting model was validated using historical data from Vietnam in the period 2013 and 2020. To illustrate the application of the proposed methodology, we presents a five-year demand forecast for the residential sector in Vietnam. When demand forecasts are performed using the predicted variables, the R square value measures model fit is up to 99.6% and overall accuracy (MAPE) of around 0.92% is obtained over the period 2018-2020. The proposed model indicates the population's impact on total national electricity demand.

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

The Effect of the Demand Forecast on the Energy Mix in the National Electricity Supply and Demand Planning (전력수급계획 수립시 수요예측이 전원혼합에 미치는 영향)

  • Kang, Kyoung-Uk;Ko, Bong-Jin;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • 제18권2호
    • /
    • pp.114-124
    • /
    • 2009
  • The Ministry of Knowledge and Economy (MKE) establishes the Basic Plan for Long-Term Electricity Supply and Demand(BPE) biannually, a governmental plan for the stable electricity supply. This study investigated the effects of the electric demand forecast on the energy mix. A simplified simulation model was developed, which replaces the WASP program developed by the KPX and verified by comparing both results. Three different electric demand scenarios were devised based upon the 2005 electric demand forecast: Proper, 5 % higher, and 5% lower. The simplified model calculates the energy mix for each scenario of the year 2005. Then it calculates the energy mix for the proper electric demand forecast of the year 2007 using the energy mixes of the three scenarios as the initial conditions, so that it reveals the effect of electric demand forecast of the previous BPE on the energy mix of the next BPE. As the proper electric demand forecasts of the year 2005 and 2007 are the same, there is no change in the previous and the next BPEs. However when the electric demand forecasts were 5% higher in the previous BPE and proper in the next BPE, some of the planned power plant construction in the previous BPE had to be canceled. Similarly, when the electric demand forecasts were 5% lower in the previous BPE and proper in the next BPE, power plant construction should be urgently increased to meet the increased electric demand. As expected the LNG power plants were affected as their construction periods are shorter than coal fired or nuclear power plants. This study concludes that the electric demand forecast is very important and that it has the risk of long term energy mix.

Development of decision support system for water resources management using GloSea5 long-term rainfall forecasts and K-DRUM rainfall-runoff model (GloSea5 장기예측 강수량과 K-DRUM 강우-유출모형을 활용한 물관리 의사결정지원시스템 개발)

  • Song, Junghyun;Cho, Younghyun;Kim, Ilseok;Yi, Jonghyuk
    • Journal of Satellite, Information and Communications
    • /
    • 제12권3호
    • /
    • pp.22-34
    • /
    • 2017
  • The K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model), a distributed rainfall-runoff model of K-water, calculates predicted runoff and water surface level of a dam using precipitation data. In order to obtain long-term hydrometeorological information, K-DRUM requires long-term weather forecast. In this study, we built a system providing long-term hydrometeorological information using predicted rainfall ensemble of GloSea5(Global Seasonal Forecast System version 5), which is the seasonal meteorological forecasting system of KMA introduced in 2014. This system produces K-DRUM input data by automatic pre-processing and bias-correcting GloSea5 data, then derives long-term inflow predictions via K-DRUM. Web-based UI was developed for users to monitor the hydrometeorological information such as rainfall, runoff, and water surface level of dams. Through this UI, users can also test various dam management scenarios by adjusting discharge amount for decision-making.

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (I) Long-Term Runoff Analysis (확률론적 중장기 댐 유입량 예측 (I) 장기유출 해석)

  • Bae, Deg-Hyo;Kim, Jin-Hoon
    • Journal of Korea Water Resources Association
    • /
    • 제39권3호
    • /
    • pp.261-274
    • /
    • 2006
  • This study performs a daily long-term runoff analysis for 30 years to forecast medium- and long-term probabilistic reservoir inflows on the Soyang River basin. Snowmelt is computed by Anderson's temperature index snowmelt model and potenetial evaporation is estimated by Penman-combination method to produce input data for a rainfall-runoff model. A semi-distributed TOPMODEL which is composed of hydrologic rainfall-runoff process on the headwater-catchment scale based on the original TOPMODEL and a hydraulic flow routing model to route the catchment outflows using by kinematic wave scheme is used in this study It can be observed that the time variations of the computed snowmelt and potential evaporation are well agreed with indirect observed data such as maximum snow depth and small pan evaporation. Model parameters are calibrated with low-flow(1979), medium-flow(1999), and high-flow(1990) rainfall-runoff events. In the model evaluation, relative volumetric error and correlation coefficient between observed and computed flows are computed to 5.64% and 0.91, respectively. Also, the relative volumetric errors decrease to 17% and 4% during March and April with or without the snowmelt model. It is concluded that the semi-distributed TOPMODEL has well performance and the snowmelt effects for the long-term runoff computation are important on the study area.

Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble (다중 기상모델 앙상블을 활용한 다지점 강우시나리오 상세화 기법 개발)

  • Kim, Tae-Jeong;Kim, Ki-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제35권2호
    • /
    • pp.327-340
    • /
    • 2015
  • General Circulation Models (GCMs) are the basic tool used for modelling climate. However, the spatio-temporal discrepancy between GCM and observed value, therefore, the models deliver output that are generally required calibration for applied studies. Which is generally done by Multi-Model Ensemble (MME) approach. Stochastic downscaling methods have been used extensively to generate long-term weather sequences from finite observed records. A primary objective of this study is to develop a forecasting scheme which is able to make use of a MME of different GCMs. This study employed a Nonstationary Hidden Markov Chain Model (NHMM) as a main tool for downscaling seasonal ensemble forecasts over 3 month period, providing daily forecasts. Our results showed that the proposed downscaling scheme can provide the skillful forecasts as inputs for hydrologic modeling, which in turn may improve water resources management. An application to the Nakdong watershed in South Korea illustrates how the proposed approach can lead to potentially reliable information for water resources management.