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Extended Forecasts of a Stock Index
using Learning Techniques:
A Study of Predictive Granularity
and Input Diversity

Steven H. Kim* and Dong-yun Lee*

The utility of leaming techniques in investment andlysis has been demonsfrated in many areas, ranging
from forecasting individual stocks to entire market indexes. To date, however, the application of artificial
intelligence to financial forecasting has focused largely on short predictive horizons. Usually the forecast
window is a single period chead: if the input data involve daily observations, the forecast is for one day
ahead; if monthly observations, then a month achead, and so on. Thus far litfle work has been
conducted on the efficacy of long-term prediction involving multiperiod forecasting.

This paper exarmnines the impact of altemnative procedures for extended prediction using knowledge
discovery techniques. One dimension in the study involves temporal granularity: a single jump from the
present pericd to the end of the forecast window versus a web of short-term forecasts involving a
sequence of single-period predictions. Another parameter relates to the numerosity of input variables: a
technical approach involving only lagged observations of the target variable versus a fundamental
approach involving multiple variables. The dual possibilities along each of the granularity and numerosity
dimensions entail a fotal of 4 models. These models are fist evaluated using neural networks, then
compared against a mulfi-input jump modef using cose based reasoning. The computational models are
examined in the context of forecasting the S&P 500 index.
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MOTIVATION

Experience with artificial intelligence appli-
cations, especially since the early 1980s, has
demonstrated the utility of learning systems for
financial prediction and investment analysis.
More specifically, knowledge-based systems may
be employed to automate many routine decision
making tasks, to serve as a substrate to
combine a multiplicity of methodologies, and to
improve system performance by learning to
identify the utility of different combinations of
techniques.

The factors behind investment performance
include both macroeconomic and microeconomic
variables. A systematic approach to knowledge
discovery for investment analysis must therefore
be able to accommodate these different types of
information. To this end, the techniques of
artificial intelligence and statistics may be
combined to yield a synergistic methodology.

To date, however, the application of artificial
intelligence to financial forecasting has focused
largely on short predictive horizons. Usually the
forecast window has been a single period
ahead: if the input data involve daily
observations, the forecast is for one day ahead;
if monthly observations, then a month ahead.
The efficacy of long-term financial forecasts
involving multiperiod prediction is largely an
unexplored field.

This paper examines the impact of alternative
procedures for extended prediction using
knowledge discovery techniques. One dimension
in the study involves temporal granularity: a
single jump from the present to the end of the
forecast window versus a web of short-term
forecasts involving a sequence of single-period
predictions. Another parameter relates to the

numerosity of input variables: a technical
approach involving only lagged observations of
the target variable versus a fundamental
approach involving multiple variables. The dual
possibilities along each of the granularity and
numerosity dimensions entail a total of 4
models. These models are first evaluated using
neural networks. Next, the 4 neural models are
compared against a multi-input jump model
using case based reasoning.

BACKGROUND

The advantages of combining multiple techni-
ques to vyield synergism for discovery and
prediction have been recognized in the past
[Kaufman et al., 1991; Kim, 1994a, 1994b; etc.].
An example lies in the call for a juxtaposition
of spectral analysis and temporal regression for
studies in the social sciences [Gottman, 1981].

A versatile approach to self-organization lies
in neural networks [Anderson and Rosenfeld,
1988; Grossberg, 1974, 1976; Haken, 1988; Hebb,
1949; Hopfield, 1982; Kohonen, 1984; Rosenblatt,
1962; Rumelhart et al., 1986]. Neural nets are
characterized by learning capability, the ability
to improve performance over time. A closely
related feature is that of generalization, relating
to the recognition of new objects which are
similar but not identical to previous ones. An
additional ~characteristic relates to graceful
degradation: the network fails gradually rather
than catastrophically when it suffers partial
damage.

To date, however, artificial networks have
been burdened with a major limitation:
protracted  training periods. Hundreds or
thousands of trials are usually required for



satisfactory performance in various tasks. The
time and effort required for training have
hindered their ~widespread application to
practical domains [Kim, 1994a, 1994b; Shibazaki
and Kim, 1991]. To fully exploit the promise
of neural nets by emulating the real-time
responsiveness of biological systems, training
time must be reduced dramatically.

One way to reduce training time and also
enhance predictive power is to preprocess the
data. In this study, input data streams are
transformed into stationary variables and also
culled for their predictive power.

METHODOLOGY

The learning techniques employed in this
study relate to neural nets and case based
reasoning. As indicated in the previous section,
neural networks have been used extensively
over the past decade for predicting financial
markets. The application of case reasoning to
forecasting, however, is an area with little prior
history [Kim, 1996].

Prior Knowledge through Case Reasoning. A
learning system should make increasingly useful
decisions as it accumulates experience. This is
the express goal of the work in case-based
reasoning (CBR).

Perhaps the most important advantage of
CBR is the affinity to human learning. People
take account of observations and utilize them
for future decision making Often the
extrapolation to new situations is ad hoc, as in
modifying a set of evaluation criteria for the
silicon-based computing industry into a similar
one for the emerging vendors of photonic
hardware. In other cases, the extrapolation is
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more formal and takes the form of inductive
propositions such as formulas, principles, laws,
or rules of thumb.

Related to the affinity of CBR to human
learning is the ease of enhancing system
performance. More generally, the knowledge in
a particular domain can be stored in formats
which are conventional for that domain. For
instance, a knowledge base for balancing stocks,
bonds, and other instruments in an investment
portfolio can store the information about
previous financial strategies in the cognitive
format used by human analysts.

This is in contrast to other knowledge-level
representations such as production rules, in
which the system developer is required to
extricate the pertinent decision rules used by a
human. In general, the problem of knowledge
extraction is further compounded by the fact
that people often perform admirably in various
domains without using - or even being aware
of the existence of - any such decision rules.

The CBR methodology can be effective even
if the knowledge base is imperfect. Certain
techniques of automated learning, such as
explanation-based learning, work well only if a
strong domain theory exists. In contrast, case
reasoning can use many examples to overcome
the gaps in a weak domain theory while still
taking advantage of the domain theory [Porter
et al., 1990]. CBR can also be used when the
descriptions of the cases, as well as the domain
theory, are incomplete. A further advantage of
CBR is the relative ease of combining
techniques with other approaches such as
production rules [Golding and Rosenbloom,
1991]. An example of such compatibility is a
system which uses case reasoning to solve

problems whenever possible; otherwise it resorts
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to heuristics to decompose a problem into a
simple one.

Retrieving Precedents. Case reasoning requires
the retrieval of past experience in the form of
cases. In this task, two types of difficulties can
arise. The matching problem refers to the task
of associating a new problem to pertinent prior
cases. A key issue lies in retrieving prior cases
which are similar to the new problem in
substantive rather than superficial ways. This
relates in part to the issue of indexing, which
deals with the organization of the case base.

Matching  Problem.
arena is dedicated to the attainment of a goal.

Problem solving in any

To this end, the decision maker must find prior
cases which resolve the specified or comparable
object_ives, rather than those that match only
surface features having little impact on the
effectiveness of the solution. For instance, two
portfolios may be of similar dollar amount and
contain a number of shares in common; but
one is directed toward high income while the
other seeks stable growth. Consequently, a
CBR system must search through the base of
previous cases by first attempting to find
solutions that meet the primary design goals,
and subsequently against
secondary objectives.

The matching problem can be addressed in a
The default scheme is to
perform an exhaustive search through the case

examine them

number of ways.

base each time a new problem  arises.
However, system performance can be degraded
by such a tedious approach.

A more systematic way is for a human to
identify the relevant prior cases. Unfortunately,
this technique requires continuing human
intervention if a system is to improve its

performance over time.

To automate the task of matching in CBR,
previous cases can be organized in some
fashion to enable the rapid identification of
To this end,
previous problems and solutions can be indexed
by their key attributes and the features which
distinguish them from other cases.

potentially relevant cases.

Indexing Problem. The indexing problem refers
to the task of storing cases for effective and
efficient retrieval. In terms of efficacy, the
subissues are accuracy - finding only relevant
cases - and completeness - identifying all relevant
cases.

In general the prior cases retrieved by case
reasoning will match the required solution only
imperfectly. In particular, the source cases may
fail to fulfill some of the requisite objectives.
At this point, an analogy can be formed
between the functionality of the precedent
solutions and the goals of the current problem.
The prior solutions may then be modified to
eliminate or circumvent the limitations. Then a
process of iterative refinement can be employed
to adapt an old solution to the new problem
context [Kim, 1990]. Whether or not analogy is
used, an organization may be imposed on the
case base through the use of clustering
techniques [Kim and Novick, 1993]. In this
way, a target case may be readilyk accom-
modated into an existing case base.

Prediction through Regression. To date, work
on econometric analysis has often relied on
regression models. This approach is illustrated
by the widespread practice of forecasting
macroeconomic  performance through multiv-
ariate regression. More recently, knowledge
processing techniques such as neural nets have



been declared as a generalization of classical
regression to the nonlinear arena.

Expert system techniques have been coupled
with statistical software to produce intelligent
packages, including those for regression,
clustering, and multivariate analysis of variance.
A case in point is REX, a package to assist
individuals with limited experience in the use
of regression [Gale, 1986]. The system checks
assumptions underlying the statistical models
and alerts the wuser to violations, while

suggesting remedial measures when it can.

Multiperiod Prediction.
extended horizon may be classified into two
types. The jump approach involves a matching
of the current situation with one or more
previous contexts, then a determination of the

consequence after a comparable interval in the

Prediction over an

precedent situation(s).

More specifically let x(f) be a vector of
values which defines the situation at the
present time t. Further, a forecast is required
for k periods ahead. To this end, the vector x(f)
is matched against a case x(t') at time ¢’ in the
past. Then the forecast f(t + k) for k periods in
the future is the k™ successor to x(+); in other
words, f(t + ky=x(t’' + k).

This matching process can be generalized by
finding the N cases from the past which most
resemble the present situation [Farmer and
Sidorowich, 1987]. Then the forecast f(t + k) can
be obtained as a weighted sum or some other
combination of the historical evolutions; namely,
x(t + k), .y x(In + k).

A second approach to extended prediction is
through a series of iterated forecasts. The
current state x(f) is used to predict the
subsequent period, yielding a forecast f(t + 1).

7

This forecast is added to the database and
regarded as if it were an actual observation.
Then the same procedure is applied while
regarding the state x(t + 1) as the current state.
The procedure is iterated k times if a k-period
forecast is required.

When the state vector x(f) involves more than
a single time series, the forecast involves
multiple variables. The sequence of multiple
variables over the course of k iterations can be
regarded as a web of forecasts. Hence we refer
to a multivariate, multiperiod forecast as a web
prediction.

A similar strategy can be followed when the
input vector is a sequence of lagged
observations of a single variable. In that case,
the current state can be defined as a sequence
of consecutive data values. Suppose that the
state vector has n components.  Given a
sequence of observations w1, uz , ... , U the state
vector at time f can be defined as

x(t)E(u,_,H_l,...,ut_l,ut)y. Figure 1
illustrates the approach when the state vector
has n = 3 components.

An example of a predictive model to
generate a web forecast is given in Figure 2. In
particular, the diagram depicts a neural network

using vectors as both inputs and outputs.

CASE STUDY

The case study involves the prediction of the
S&P 500 index (SPX). For univariate inputs,
only lagged values of SPX are utilized.

For multivariate inputs or outputs, five other
variables play a role. These variables relate to
federal funds (FF), money stock (M2), housing
starts (HS), industrial production (IP), and the
consumer price index (CPI). Further details
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concerning the variables are given in Table 1.

A plot of the target variable SPX over the
entire period is given in Figure 3. All variables
were partially straightened out through a log
transform (L), then rendered dimensionless
through a standardization (Z). The resulting
variables are shown in Figure 4.

Selection of Variables. The autocorrelation of
ZISPX as a function of lag is given in Figure
5(@). The linkage, or lagged
cross-correlation, of the other variables with
ZISPX are portrayed on the other charts in
Figure 5.

Since housing starts, ZLHS, had only weak
correlation with ZLSPX at all leads from -12 to
+12, it was excluded from further consideration.
For every other variable, only the lag exhibiting
the highest correlation with ZLSPX was
included in the multivariate models.

diagonal

To explain the selected lag of each variable
exhibiting the highest correlation with ZLSPX, a
change in viewpoint is helpful. For a web
prediction, each iteration involves a forecast
window of length k = 1. Then only lead values
of L < -1 may be considered; that is, all data
up to the immediate past.

To illustrate, consider federal funds. For a
web prediction, the candidate leads are FF(-12)
through FF(-1). Among these, FF(-1) shows the
highest correlation and is therefore selected.

To produce a forecast of k =1 period ahead,

however, the "current" time # has to be shifted -

forward by k = 1 period. In that case, the
current value of federal funds, FF(0), is the
appropriate value to use in generating a
forecast for the next period, £ + 1.

Consider now a jump prediction with forecast
window size k = 6. Then any time series with

lead L < - 6 is a candidate input variable. For
federal funds, the highest correlation among the
data series FF(-12) through FF(-6) is exhibited
by FF(-12). During the predictive procedure, the
appropriate series to employ is FF(-6), since that
represents a lag of 12 from the forecast
destination at period t + 6. This reasoning
explains the apparent discrepancy in lag values
for the variables in Figure 5 versus those in
Table 2.

Identification of Models. As explained in an
earlier section, the dimension of temporal
granularity involves a jump or a web
prediction. A second dimension of the study
relates to the number of variables: a univariate
versus a multivariate model. The resulting 4
combinations have all been implemented on
neural networks. In addition, a multivariate
jump model using case base reasoning was
tested. The 5 models and their performance are
highlighted in Table 2. ,

The performance data for the neural models
are presented in an array for ready
interpretation in Table 3. The results indicate
that jump prediction supersedes a web forecast.
Moreover, multivariate inputs yield superior
performance over univariate inputs. These
conclusions are significant at p < 003, as
shown in Table 4.

Finally, a multivariate jump model using case
reasoning (MuJCBR) performs better than the
best neural model. This result is mildly
significant at level p < 0.08, as shown in Table 5.

DISCUSSION

It comes as no surprise that a funda-

mental analysis incorporating multiple



variables performs better than a purely
technical approach involving a single
variable. A stock index is a composite
measure of stock prices which in turn
reflect the aggregate view of investors
concerning corporate performance. Corpo-
rate profitability in turn depends in part
on general economic conditions. Under the
assumption of bounded rationality, there is
no reason to believe in a perfectly efficient
market. More specifically, stock prices need
not embody all pertinent information.

Another anticipated result is the mild
superiority of case reasoning over neural
nets. The temporal CBR methodology has
often. dominated mneural techniques,
although its performance does depend on
the particular application [Kim and Oh,
1996].

The major surprise relates to the
superiority of a single jump over a web
projection. Conventional econometric
models tend to rely on a web approach to
forecasting the economic variables rather
than utilizing several jump models which
are distinguished by the size of their
respective forecast windows.

An analogous development has occurred
in the field of engineering. Finite element
analysis has at times been declared as the
greatest triumph of computational enginee-
ring. This method relies on a web or mesh
of locations superimposed on a physical
object to calculate such parameters as
temperature or stress as a function of
location. The popularity of web techniques
in  both the  socioeconomic  and
technological spheres would suggest its
utility in the financial arena as well.

It may be argued that a series of
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iterated forecasts will produce a large
cumulative error, thereby limiting the
accuracy of the web approach. On the
other hand, a jump approach will magnify
any imperfection latent in the model at the
start of the forecasting exercise.

These arguments can be made more
precise as follows. At the current time f,

‘the existing situation x(f) is matched

against a set of precedent cases or
neighbors P(f)={x(t)}. When case reasoning
is used, the set P(t) is identified explicitly
at time t For a neural approach, the
appropriate set of precedents is embodied
implicitly in the arc weights and other
parameters of the network.

Next, the kth successors to the neighbors,
which we denote as P(t + k) = {x(t + k)}
are aggregated through a weighted sum to
yield the forecast f(t + k) for k periods
hence.

Let ¢; denotes the error introduced in
the first iteration, k = 1. This error arises
from several sources:

e In general, none of the neighbors {x(#)}
will match the current situation x(f)
exactly. Hence each successor x(t; + k)
should resemble the forecast f(t; + k)
only imperfectly.

e Suppose a perfect match exists between
the neighbors and the current vector
according to the accuracy available in
all the data points. However, the data
are only imperfect observations of the
real world; for instance, GDP is a
metric of economic activity, but it is
only one imperfect measure of the state
of the economy. For these reasons, two
points x(f) and x(T) in the state space
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may be identical numerically but
actually represent the tops of very
different icebergs. In this situation, x(f)
and x(T) may well move forward in

divergent directions.

Under a linear model of error propag-
ation, the error ¢, associated with the first

step will be magnified k times for a jump
forecast of length k:

&' = ke,

Consider now a web forecast. Let ¢; be

the error associated with iteration i. Under
an additive model of error accumulation,
the total error after k steps is

Ea= ﬁ €

=1

If the cumulative error grows geomet-
rically rather than additively, the error due
to a web forecast is

There is no reason to suppose that &"
should always be smaller or greater than

either ¢, or ¢,

The preceding argument has relied on a
linear versus an additive or multiplicative
model of error propagation. However, a
nonlinear assumption for error accumul-
ation is almost certainly more appropriate
for the chaotic variables arising in financial
economics. With the nonlinear assumption,
there is even less reason to expect a
consistent relationship between the error

¢*due to a jump and the errors ¢, or g,

due to a web prediction. A promising
direction for the future is to investigate
these arguments in greater detail and for

additional domains.

CLOSURE

This study has explored a number of
alternative ways to deploy learning techni-
ques to generate long-term forecasts. As
expected, a fundamental approach using
multiple variables yielded better perfor-
mance than a purely technical approach
involving a single input variable.

Contrary to expectations, however, the
use of jump prediction outperformed a
web prediction. This result may be due to
the accumulation of errors during the
iterative process of providing single-step
forecasts. However, it is not clear that the
outcome should hold for all application
domains.

An obvious direction for future work is
to replicate the experiments for other
target variables and for differing perio- city
of the data series (e.g. daily or weekly
data). These and similar investigations will
provide a better understanding of the
nature of financial markets as well - as

practical tools for risk management.
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Period:
Actual Data:

Forecast:

Error:

Ll w [ i

LR RN A I

t ft+1 f[+2 ft+3

Figure 1. Strategy for univariate, multiperiod web prediction for the case of 1 variable ank= 3
periods ahead. In this illustration, the state vectoX() at time ¢ involves 3 consecutive
values. For instance, the state at time(+1) is given byX(t +1) =(u, .y %,, f, +). The
first error to be considered ise, . 3 at period (+ 3).

Input layer Hidden layer Output layer
FF,

M2,

»
"

SPX,

IP,

t+1

CPI,

Figure 2. Strategy for multivariate prediction. The neural network architecture uses vectors as
both inputs and outputs. Each iteration involves a forecast f for £ = 1 period ahead.
In web prediction, the vector of forecasts for the next period is added to the database

along with existing data; for a forecast horizon of k periods, the procedure is iterated
k times.
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Figure 3. Time series of S&P 500 index: 1960.2 - 1992.12.
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Figure 4. Time series plot of transformed variables. For instance, ZLFF denotes the standardized
form of the logarithm of federal funds (FF).
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(b) Diagonal correlation of SPX with
federal funds FF: ZLSPX vs. ZLFF.
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Figure 5. Correlation diagrams between SPX and assorted variables: variation of autocorrelation
function (ACF) or cross-correlation function (CCF) with the number of leads. Due to low
correlations, ZLHS is dropped from further consideration. For every other variables, the
lag (ie. lead L 0) exhibiting the highest correlation with ZLSPX is selected. The
appropriate value of L depends on whether a jump or web model is used, as explained

in the text.
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Figure 6. Predicted and actual values over the test period.
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Figure 7. Residuals of the forecast values from Figure 6.
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Table 1. Description of original variables. The entire dataset consisted of 395 monthly observations
from Feb. 1960 to Dec. 1992. The training data were monthly observations from Feb. 1960

to Oct. 1988; and the test set from Nov. 1988 to Dec. 1992.

Label Name Description
Standard &
SPX Dail i ice he last day of month.
Poors 500 y closing price on the last day
FF Federal Funds Average of daily rates during the month.
M2 Money Stock Seasonally adjusted. Bilions of dollars.
New starts privately owned housing units.
HS Housing Starts 2 pnj.r Y 9
Seasonally adjusted.
P Industrial Production Seasonally adjusted index. 1987 = 100.
CPI Consumer Price index

All urban consumers. Not seasonally adjusted.

Table 2. List of models, their
abbreviations are used: the number of distinct input variables is denoted Un for Univariate
or Mu for Multivariate; the granularity of prediction is J for a single jump or W for a web
of estimates; the learning methods are Nn for neural network or CBR for case based

reasoning. The error criterion is the mean absolute percent error (MAPE).

associated variables,

and performance

results.

The following

Input Output .

Mode! Variables Variables Target Variable MAPE
SPX[0], SPX{-1],

UnJNn SPX[-2}], SPX{-3], SPX]6] SPX[6] 5.52
SPX]-4]
SPXj0], SPX{-1],

UnWNn SPX[-2), PX[-3], SPX|6] SPX|6] 8.56
SPX{-4]
FF[-6], M2[0},

MuJdNn SPX[0], P[0}, SPX[6] SPX[6] 5.31
CPI[0]
FF{0], M2[0], FF[6], M2(6],

MuWNn SPX[0}, P[0}, SPX[6], IPi6], SPX|6} 6.06
CPIj0] CPi[6)
FF[0], M2j0],

MuJCBR SPX[0), P[0}, SPX[6] SPX|6} 4.09

CPI[0]
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Table 3. A partial table of results for neural network models from Table 2.

Projection
Web
Input Vector Jump
Univariate 552 , 8.56
Multivariate 5.31 6.06

Table 4. Two-way ANOVA for the data in Table 3.

Sum of Mean Sig
Source of Variation Squares DF Square F of F
Main Effects 270.596 2 135.298 7.385 .001
Input_Vector 90.896 1 90.896 4,961 027
Projection 179.700 1 179.700 9.809 002
2-Way Interactions 65.530 1 65.530 3577 .060
Input_vectorProjection 65.530 1 65.530 3.577 060
Explained 336.126 3 112,042 6.116 001
Residual 3590.768 196 18.320
Total 3926.895 199 19.733

Table 5. Pairwise t-tests for the difference of means, based on absolute values of residuals. The
CBR methodology is tested against the best neural model, MuJNn; the case reasoning

approach appears to be mildly superior at p < 0.08.

Pair t-value Significance
UndNn vs. UnWNn -3.82 0.000
MudNn vs. MuWNn -0.85 0.400
UnJdNn vs. MuJNn 0.19 0.849
MuJdNn vs. MuJCBR 1.78 0.077
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