• 제목/요약/키워드: long-term forecasts

검색결과 97건 처리시간 0.022초

효율적인 수자원관리를 위한 범주형 확률장기예보의 예측력 평가 및 정량화 (Assessment of predictability of categorical probabilistic long-term forecasts and its quantification for efficient water resources management)

  • 손찬영;정예림;한수희;조영현
    • 한국수자원학회논문집
    • /
    • 제50권8호
    • /
    • pp.563-577
    • /
    • 2017
  • 기후변화로 인해 강수의 불확실성이 증가하는 현 시점에서 효율적인 물 관리를 위한 계절예측 및 기상 예보의 활용은 필수적이다. 본 연구에서는 기상청에서 2014년 6월부터 시행하고 있는 범주형 확률장기예보를 Hit Rate, Reliability Diagram, Relative Operating Curve (ROC)의 평가지표를 활용하여 예측력을 검증하였고, 추가적으로 확률예보를 활용하여 정량적인 예측 강수량을 생산하는 기법을 제안하였다. 확률장기예보의 예측력 검증결과 최대 48%의 예측력을 갖는 것을 확인할 수 있었다. 확률예보를 활용하여 예측 강수량을 추정한 결과, 정량적으로 관측 자료와 유사하게 모의되는 것을 확인할 수 있었으며 예측 적합도 평가결과 100%의 정확도를 가진 예보의 경우 최대 0.98, 실제 예보의 경우 최대 0.71의 상관계수를 보였다. 본 연구에서 제안하는 확률예보를 활용한 예측 강수량 추출기법은 강수의 불확실성을 고려한 물 관리를 가능하게 해줄 것으로 판단되며 효율적인 수자원 장기 이수계획 및 저수지 운영의 의사결정지원 등에 활용 가능할 것으로 기대된다.

한국 연안의 장주기 조석성분이 총 수위 예측에 미치는 영향에 관한 연구 (A Study on The Effects of Long-Term Tidal Constituents on Surge Forecasting Along The Coasts of Korean Peninsula)

  • 김지하;장필훈;강현석
    • 한국해안·해양공학회논문집
    • /
    • 제34권6호
    • /
    • pp.222-232
    • /
    • 2022
  • 우리나라 연안의 30개 조위관측소에서 관측된 조위자료를 조화분해하여 2021년에 대한 해역별 장주기 조석성분의 특성 및 장주기 조석성분이 총 수위 예측에 미치는 영향에 대해 알아보았다. 먼저 관측조위의 조화분해 결과, 우리나라 연안에서 장주기 조석성분은 연주조(Sa)와 반년주조(Ssa)가 우세하였으며, 해역별로는 서해안에서 약 17.8 cm의 상대적으로 큰 진폭을 보였다. 계속해서 총 수위 예측에 대한 영향을 살펴보고자, 2021년을 연구 기간으로 장주기 조석성분이 포함된 예측조위와 포함되지 않은 예측조위를 생산하였고, 각각의 예측조위를 폭풍해일 모델의 해일고 예측결과에 더하여 총 수위를 생산하였다. 장주기 조석성분을 고려하지 않은 총 수위와 고려한 총 수위의 오차를 비교한 결과, 전반적으로 뚜렷한 계절적 차이가 나타났다. 장주기 조석성분을 고려하지 않은 총 수위에 비해서, 장주기 성분이 고려된 총 수위는 여름철에는 오차가 큰 폭으로 감소하였고, 겨울철에는 강한 음의 편차를 보이며 오차가 증가하는 경향이 나타났다. 이는 우리나라 겨울철의 강한 고기압과 같은 기상현상에 의한 영향이 예측조위와 해일고 예측결과에 이중으로 반영되어 나타난 결과로 해석되었다. 해일고 예측결과를 조화분해하였을 때, 연주기 성분이 우세하였고 이를 장주기 조석성분이 고려된 총 수위에서 제거하였을 때, 특히 겨울철에 나타난 강한 음의 편차가 사라지고 연평균 RMSE도 감소하는 것으로 나타났다.

Enhancing the radar-based mean areal precipitation forecasts to improve urban flood predictions and uncertainty quantification

  • Nguyen, Duc Hai;Kwon, Hyun-Han;Yoon, Seong-Sim;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.123-123
    • /
    • 2020
  • The present study is aimed to correcting radar-based mean areal precipitation forecasts to improve urban flood predictions and uncertainty analysis of water levels contributed at each stage in the process. For this reason, a long short-term memory (LSTM) network is used to reproduce three-hour mean areal precipitation (MAP) forecasts from the quantitative precipitation forecasts (QPFs) of the McGill Algorithm for Precipitation nowcasting by Lagrangian Extrapolation (MAPLE). The Gangnam urban catchment located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 24 heavy rainfall events, 22 grid points from the MAPLE system and the observed MAP values estimated from five ground rain gauges of KMA Automatic Weather System. The corrected MAP forecasts were input into the developed coupled 1D/2D model to predict water levels and relevant inundation areas. The results indicate the viability of the proposed framework for generating three-hour MAP forecasts and urban flooding predictions. For the analysis uncertainty contributions of the source related to the process, the Bayesian Markov Chain Monte Carlo (MCMC) using delayed rejection and adaptive metropolis algorithm is applied. For this purpose, the uncertainty contributions of the stages such as QPE input, QPF MAP source LSTM-corrected source, and MAP input and the coupled model is discussed.

  • PDF

The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제26권5호
    • /
    • pp.497-506
    • /
    • 2019
  • Forecasting the U.S. employment level is made using machine learning methods of the artificial neural network: deep neural network, long short term memory (LSTM), gated recurrent unit (GRU). We consider the big data of the federal reserve economic data among which 105 important macroeconomic variables chosen by McCracken and Ng (Journal of Business and Economic Statistics, 34, 574-589, 2016) are considered as predictors. We investigate the influence of the two statistical issues of the dimension reduction and time series differencing on the machine learning forecast. An out-of-sample forecast comparison shows that (LSTM, GRU) with differencing performs better than the autoregressive model and the dimension reduction improves long-term forecasts and some short-term forecasts.

인구변동 추이와 전망 -2000년대를 향한 국가장기발전 구상을 중심으로- (Trend of Population Change and Future Population in Korea - Korean Future in Year 2000; Long Term National Development -)

  • 고갑석
    • 한국인구학
    • /
    • 제8권1호
    • /
    • pp.87-117
    • /
    • 1985
  • In Principle, the distriction should be understood between projections and forecasts. When the author or user of a projection is willing to describe it as indicating the most likely population at a give date, then he has made a forecast Population change since 1 960 has been reviewed briefly in order to forecast the population of Korea in the year 2,000 which is a leading factor in long term national development plan for which Korea Institute for Population and Health (KIPH) has been participated since 1983. The author of this paper introduced the population forecast prepared for the long term national development plan and an attempt of comparisons with other forecasts such as D.P. Smith's, T. Frejka's, Economic Planning Board's (EPB), UN's and S.B. Lee's was made. Those six forecasts of Korean future population in year 2,000 varried from 48.5 million to 50.0 million due to the base population and assumption of fertility and mortality however the range of total population size is not large enough. Taking four forecasts such as KIPH, EPB, UN, and Lee based on 1980 population census results and latest data of fertility and mortality, KIPH and UN forecast are close in total population size even though there was a slight difference in fertility and mortality assumptions. The smallest size of total population was shown by S.B. Lee (see Table 13) although the difference between KIPH and Lee was approximately one million which is two percent of total population in year 2,000. As a summary of conclusion the author pointed out that one can take anyone of forecasts prepared by different body because size and proportion wise of the Korean population until early I 990s can not be different much and new population projections must be provided by using 1985 population census data and other latest fertility and mortality information coflected by Korea Institute for Population and Health and Economic Planning Board in forth comming year.

  • PDF

계절별 저수지 유입량의 확률예측 (Probabilistic Forecasting of Seasonal Inflow to Reservoir)

  • 강재원
    • 한국환경과학회지
    • /
    • 제22권8호
    • /
    • pp.965-977
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. It is necessary to get probabilistic forecasts to establish risk-based reservoir operation policies. Probabilistic forecasts may be useful for the users who assess and manage risks according to decision-making responding forecasting results. Probabilistic forecasting of seasonal inflow to Andong dam is performed and assessed using selected predictors from sea surface temperature and 500 hPa geopotential height data. Categorical probability forecast by Piechota's method and logistic regression analysis, and probability forecast by conditional probability density function are used to forecast seasonal inflow. Kernel density function is used in categorical probability forecast by Piechota's method and probability forecast by conditional probability density function. The results of categorical probability forecasts are assessed by Brier skill score. The assessment reveals that the categorical probability forecasts are better than the reference forecasts. The results of forecasts using conditional probability density function are assessed by qualitative approach and transformed categorical probability forecasts. The assessment of the forecasts which are transformed to categorical probability forecasts shows that the results of the forecasts by conditional probability density function are much better than those of the forecasts by Piechota's method and logistic regression analysis except for winter season data.

확률론적 중장기 댐 유입량 예측 (II) 앙상블 댐 유입량 예측을 위한 GDAPS 활용 (Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (II) Use of GDAPS for Ensemble Reservoir Inflow Forecasts)

  • 김진훈;배덕효
    • 한국수자원학회논문집
    • /
    • 제39권3호
    • /
    • pp.275-288
    • /
    • 2006
  • 본 연구에서는 GDAPS(T213) 중기 기상 수치예보 자료를 활용한 ESP (Ensemble Streamflow Prediction) 기법을 개발하여 미래에 발생할 수 있는 댐 유입량의 중장기적 확률예측을 위해 초과 확률구간별 댐 유입량을 예측하고 RPSS 검증기법으로 예측결과의 정확도를 분석하였다. 개발된 ESP시스템을 적용한 결과 일단위 개념의 확률예보는 높은 불확실성을 내포할 수 있고, 중장기 확률예보에 초점을 맞추어 1, 3, 7일 등의 예측시간 해상도에 대한 ESP정확도의 민감도를 분석한 결과 예측시간 해상도 간격이 증가할수록 예측결과의 불확실성이 감소하면서 그 정확도가 전반적으로 증가함을 살펴볼 수 있었다. 이러한 결과를 바탕으로 GDAPS 자료를 활용한 1주 단위의 한달(28일)예보를 수행한 ESP 결과는 각 초과 확률구간 분포의 적절한 증가 및 감소로 인하여 그 시간적 변동성이 안정적으로 예측되고 예측결과의 불확실성을 감소시킬 수 있어 그 활용가치가 높은 것으로 나타났다. 이러한 관점에서 본 연구의 ESP 시스템은 중장기적 측면에서 GDAPS 자료의 활용가치를 높일 수 있고, 기존 ESP 결과보다 향상된 정확도로 댐 유입량을 예측할 수 있으므로 실시간 댐 유입량 예측에 적용한다면 수자원 관리 차원에서 유용한 수단이 될 수 있을 것이다.

ECMWF 계절 기상 전망을 활용한 국내 다목적댐 유입량 예측의 성능 비교·평가 (Assessing the skill of seasonal flow forecasts from ECMWF for predicting inflows to multipurpose dams in South Korea)

  • 이용신;강신욱
    • 한국수자원학회논문집
    • /
    • 제57권9호
    • /
    • pp.571-583
    • /
    • 2024
  • 중장기적으로 댐에 유입될 물의 양을 예측하는 것은 댐의 안정적 운영 및 홍수·가뭄 등 물 재해 예방을 위해 필수적이지만, 기후변화에 따른 극한 기후 현상의 증가에 따라 미래 수문상황을 정교하게 예측하는 것은 더욱 어려워지고 있다. 2000년 이후, 중장기적 수문학적 예측을 위해 향후 약 7개월까지에 대한 예측 정보를 제공하는 계절 기상 전망과 이를 수문학적으로 해석한 계절 유량 전망(Seasonal Flow Forecasts, SFFs)이 전 세계적으로 관심을 받아왔다. 본 연구는 2011년부터 2020년 까지 국내 12개 다목적댐에 대해 ECMWF에서 제공하는 계절 기상 전망을 수문학적 모형을 통해 유입량으로 변환하고, 그 예측의 성능을 국내외 물 관리에 많이 활용되는 Ensemble Streamflow Prediction (ESP)과 비교하였다. 본 연구의 결과는 SFFs가 1에서 2개월의 단기간에 대한 예측에 더 효과적이지만, 장기간 예측에서는 ESP가 더 나은 성능을 나타낸다는 것을 확인하였다. 계절적으로는 10~11월에서 SFFs의 유입량 예측 신뢰도가 높았지만, 12~2월에서는 다소 낮게 나타났다. 또한, SFFs는 건조한 조건을 정량적으로 예측하는데 나은 성능을 나타낸 반면, 습윤한 조건에 대해서는 유입량을 과소평가하는 경향을 보였다.

TIGGE/S2S 기반 중장기 토양수분 예측 및 검증 (Verification of Mid-/Long-term Forecasted Soil Moisture Dynamics Using TIGGE/S2S)

  • 신용희;정임국;이현주;신용철
    • 한국농공학회논문집
    • /
    • 제61권1호
    • /
    • pp.1-8
    • /
    • 2019
  • Developing reliable soil moisture prediction techniques at agricultural regions is a pivotal issue for sustaining stable crop productions. In this study, a physically-based SWAP(Soil-Water-Atmosphere-Plant) model was suggested to estimate soil moisture dynamics at the study sites. ROSETTA was also integrated to derive the soil hydraulic properties(${\alpha}$, n, ${\Theta}_r$, ${\Theta}_s$, $K_s$) as the input variables to SWAP based on the soil information(Sand, Silt and Clay-SSC, %). In order to predict the soil moisture dynamics in future, the mid-term TIGGIE(THORPEX Interactive Grand Global Ensemble) and long-term S2S(Subseasonal to Seasonal) weather forecasts were used, respectively. Our proposed approach was tested at the six study sites of RDA(Rural Development Administration). The estimated soil moisture values based on the SWAP model matched the measured data with the statistics of Root Mean Square Error(RMSE: 0.034~0.069) and Temporal Correlation Coefficient(TCC: 0.735~0.869) for validation. When we predicted the mid-/long-term soil moisture values using the TIGGE(0~15 days)/S2S(16~46 days) weather forecasts, the soil moisture estimates showed less variations during the TIGGE period while uncertainties were increased for the S2S period. Although uncertainties were relatively increased based on the increased leading time of S2S compared to those of TIGGE, these results supported the potential use of TIGGE/S2S forecasts in evaluating agricultural drought. Our proposed approach can be useful for efficient water resources management plans in hydrology, agriculture, etc.

함수 주성분 분석을 이용한 한국의 장기 에너지 수요예측 (Long-term Energy Demand Forecast in Korea Using Functional Principal Component Analysis)

  • 최용옥;양현진
    • 자원ㆍ환경경제연구
    • /
    • 제28권3호
    • /
    • pp.437-465
    • /
    • 2019
  • 본 연구에서는 장기 전력 수요와 GDP 사이의 소득계수를 시간과 GDP의 값에 따라 변화하도록 모형화한 Chang et al.(2016)에 기반을 두어 장기 에너지 수요의 예측에 관련된 새로운 방법을 제안한다. 본 논문에서는 장기 에너지와 GDP 사이의 소득계수를 함수로 표현하고, 함수 주성분 분석(Functional Principal Component Analysis)을 통하여 함수계수(Functional Coefficient)를 예측하고 이를 장기 에너지 수요 예측에 적용한다. 또한 함수계수를 비모수적으로 추정할 때 너비띠 모수를 예측 실험 오차를 최소화하도록 설정하는 방식을 제안하였고 개별 국가의 함수계수 변화 패턴을 반영하여 개별 국가의 특수성을 반영하는 예측 방법도 제시한다. 실증분석에서는 전 세계 에너지 데이터를 이용하여 한국의 장기 에너지 수요 예측을 본 논문에서 제시한 방법으로 예측하고, 기존의 방법들 보다 안정적인 장기 에너지 수요 예측이 가능함을 보였다.