Ortega, Edwin M.M.;Cordeiro, Gauss M.;Hashimoto, Elizabeth M.;Suzuki, Adriano K.
Communications for Statistical Applications and Methods
/
제24권1호
/
pp.43-65
/
2017
We propose a flexible cure rate survival model by assuming that the number of competing causes of the event of interest has the Poisson distribution and the time for the event follows the gamma-G family of distributions. The extended family of gamma-G failure-time models with long-term survivors is flexible enough to include many commonly used failure-time distributions as special cases. We consider a frequentist analysis for parameter estimation and derive appropriate matrices to assess local influence on the parameters. Further, various simulations are performed for different parameter settings, sample sizes and censoring percentages. We illustrate the performance of the proposed regression model by means of a data set from the medical area (gastric cancer).
In the age of industry 4.0, artificial intelligence is being widely used to realize machinery condition monitoring. Due to their excellent performance and the ability to handle large volumes of data, machine learning techniques have been applied to realize the fault diagnosis of different equipment. In this study, we performed the failure mode effect analysis (FMEA) of an aluminum electrolytic capacitor by using deep learning and big data. Several tests were performed to identify the main failure mode of the aluminum electrolytic capacitor, and it was noted that the capacitance reduced significantly over time due to overheating. To reflect the capacitance degradation behavior over time, we employed the Vanilla long short-term memory (LSTM) neural network architecture. The LSTM neural network has been demonstrated to achieve excellent long-term predictions. The prediction results and metrics of the LSTM and Vanilla LSTM models were examined and compared. The Vanilla LSTM outperformed the conventional LSTM in terms of the computational resources and time required to predict the capacitance degradation.
본 연구에서는 암석과 콘크리트의 정적 및 동적 장기강도시험을 통해 이들 재료의 시간 의존적 거동에 대해 연구했으며, 특히 장기강도시험 중 발생한 미소파괴음 신호를 분석하여 장기 안정성 평가에 활용하고자 하였다. 정적 장기강도시험의 경우 임계하 균열성장시험을 활용하여 Mode I과 Mode II에 대한 장기거동과 미소파괴음 발생특성을 분석하였으며, 동적 장기강도시험의 경우, 반복재하 4점 굴곡시험을 통한 장기강도의 한계와 미소파괴음 발생특성을 분석하였다. 미소파괴음 분석결과, 미소파괴음 히트 누적곡선 대 시간에 따른 곡선은 1차, 2차, 3차 구간이 있는 크립곡선의 모양과 유사한 모양을 보였다. 선형구간에 해당하는 미소파괴음 히트 누적곡선의 2차 구간의 기울기와 지연파괴시간과의 로그-로그 관계로부터 암석과 콘크리트의 정적 및 동적 장기 안정성을 평가하는 방안에 대한 가능성을 제시하였다.
해양지반에 설치된 구조물은 육상지반에 설치된 구조물과는 달리 해상에서의 파하중, 풍하중, 그리고 조류하중 등과 같은 장기 반복하중을 고려해야 된다. 이에 해양지반에 설치된 구조물을 설계하기 위해서는 장기 반복하중을 받는 지반의 거동을 분석하는 것이 중요하다. 본 논문에서는 반복단순전단시험을 수행하여 구속압에 따른 장기반복하중에 대한 지반거동을 분석하고, 구속압에 따른 파괴특성을 쉽게 확인할 수 있는 3차원 설계파괴곡선을 작성하였다. 분석결과, 동일한 반복전단응력비와 평균전단응력비 조건이어도 구속압에 따라 설계파괴곡선의 위치가 차이가 있었으며, 파괴에 도달하는 반복하중횟수가 구속압에 영향을 받는 것을 확인하였다. 작성한 구속압에 따른 3차원 설계파괴곡선은 구속압에 따른 설계파괴곡선의 경향성과 대략적인 값을 추정할 수 있다.
In general, an inspection schedule is established based on the long-term fatigue life during the design stage. However, in the design stage, it is difficult to clearly identify the uncertainty factors affecting long-term fatigue life. In this study, the probabilistic fatigue life assessment was conducted in accordance with the methodology of DNV-GL. Firstly, The initial crack distribution estimated through the initial crack propagation analysis was updated by reflecting the results of crack inspection. Secondly, the updated crack distribution was compared with the initial crack distribution, and the probability of failure was updated with the effect of crack inspection.
In this paper, the long-term reliability for 1.25G transceiver in use of high speed optical access network is investigated. High temperature storage tests and accelerated life tests are used to long-term reliability. Accelerated aging test have been during 3,000 hour of the three accelerated aging conditions by caused high temperature stress. Mean life is assumed to follow the Arrhenius relationship and analysis from the failure data obtained in the accelerated aging conditions.
In our daily life, artificial intelligence performs simple and complicated tasks like us, including operating mobile phones and working at homes and workplaces. Artificial intelligence is used in industrial technology for diagnosing various types of equipment using the machine learning technology. This study presents a fault mode effect analysis (FMEA) of start motors using machine learning and big data. Through multiple data collection, we observed that the primary failure of the start motor was caused by the melting of the magnetic switch inside the start motor causing it to fail. Long-short-term memory (LSTM) was used to diagnose the condition of the magnetic locations, and synthetic data were generated using the synthetic minority oversampling technique (SMOTE). This technique has the advantage of increasing the data accuracy. LSTM can also predict a start motor failure.
일반적으로 평균 수명이 1.0~1.5년인 전기식 액중형 펌프(electrical submersible pump, ESP)는 유·가스 및 저류층 특성, 운영 조건에 따라 성능 저하 및 수명 감소가 발생하며, 이에 따른 ESP의 고장은 회수 및 설치에 따른 높은 유정 개·보수(workover) 비용과 생산 중단에 따른 추가 비용이 발생한다. 이에 본 연구에서는 유·가스정에서 ESP 장기 운영에 따른 수명을 예측하고자 환형 유동 시스템(flow loop system)을 설계 및 구축하고, ESP 설치 초기 시점부터 고장 시점까지의 ESP 수명에 대한 전 주기 데이터를 취득 및 분석하였다. 구축한 시스템에서 산출되는 데이터 중 ESP의 유체유량, 흡입구 및 토출구의 온도, 압력 그리고 외측부에 설치된 진동 측정기의 데이터 분석을 통하여 ESP 장기 운영에 따른 성능 상태를 정상(normal), 권고 I (advise I), 권고 II (advise II), 유지관리(maintenance), 고장(failed)의 총 5단계로 분류하였다. 실험 결과를 통해 ESP 장기 운영시 단계별 데이터의 경향 차이를 확인하였으며, 이를 통해 운영 기간에 따른 ESP의 상태를 진단하고 펌프의 고장을 예측하였다. 본 연구를 통해 도출된 결과는 유·가스정에서 운영되는 ESP의 상태 모니터링(monitoring) 을 위한 고장 예측 프로그램 및 데이터 분석 알고리즘 개발에 활용될 수 있을 것으로 판단된다.
The safety related heat exchangers have been evaluated for their performance during the operation of the nuclear power plant. The evaluation program for the safety related heat exchanger was developed in 2010 and used by KHNP based on EPRI TR-10739 algorithms. The spend fuel pool heat exchanger is one of the safety related heat exchanger in the nuclear power plant and also evaluated for their performance. Recently the performance evaluation for the spend fuel pool heat exchanger was not available because of the decreased heat in the spend fuel pool due to the long term overhaul. This paper analyzes the main cause of evaluation failure in the evaluation process and suggests the criteria for the heat exchanger performance evaluation during the long term overhaul.
The use of resin-bonded fixed partial dentures described in the early 1980s caused an conservative way to preserve tooth structure in the restorative dental community. The treatment of patients with requires long term analysis of clinical application and basic research. Failure rates of these prosthesis ranged from 3% to 55%. These varieties were orginated by different techniques, materials, tooth preparation methods and diverse clinical situations. This article review was focused on the standard long term results and in vitro studies on bond strength between metal and teeth. From this, many useful clinical guidelines to RBFPD could be adopted to clinical dentistry. For successful results, careful case selection and good clinical skills are needed. And appropriate techniques for each situations should be adopted. Also, RBFPD using new materials like all-ceramics, FRC/Ceromer was introduced.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.