• Title/Summary/Keyword: long-term bridge monitoring

Search Result 109, Processing Time 0.024 seconds

Modeling of wind and temperature effects on modal frequencies and analysis of relative strength of effect

  • Zhou, H.F.;Ni, Y.Q.;Ko, J.M.;Wong, K.Y.
    • Wind and Structures
    • /
    • v.11 no.1
    • /
    • pp.35-50
    • /
    • 2008
  • Wind and temperature have been shown to be the critical sources causing changes in the modal properties of large-scale bridges. While the individual effects of wind and temperature on modal variability have been widely studied, the investigation about the effects of multiple environmental factors on structural modal properties was scarcely reported. This paper addresses the modeling of the simultaneous effects of wind and temperature on the modal frequencies of an instrumented cable-stayed bridge. Making use of the long-term monitoring data from anemometers, temperature sensors and accelerometers, a neural network model is formulated to correlate the modal frequency of each vibration mode with wind speed and temperature simultaneously. Research efforts have been made on enhancing the prediction capability of the neural network model through optimal selection of the number of hidden nodes and an analysis of relative strength of effect (RSE) for input reconstruction. The generalization performance of the formulated model is verified with a set of new testing data that have not been used in formulating the model. It is shown that using the significant components of wind speeds and temperatures rather than the whole measurement components as input to neural network can enhance the prediction capability. For the fundamental mode of the bridge investigated, wind and temperature together apply an overall negative action on the modal frequency, and the change in wind condition contributes less to the modal variability than the change in temperature.

An Analysis of the Long-term Behavior of the Cable System in the Suspension Bridge (현수교 케이블 시스템의 장기거동 분석)

  • Ryu, Duck-Yong;Kim, See-Dong;Jung, Hie-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.135-144
    • /
    • 2009
  • The cable system of suspension bridges is a very important non-elastic element which caries an external load by a tension force of the cable, such that creates the integrity of a structure. It is not easy to find if cable system have been changed by the maintenance activities such as repairs or reinforcement. Sometimes the maintenance can cause structural deformations and changes of the tension force in cables. In most cases, the cable stayed bridges are managed by health monitering system, however, the main cable of suspension bridges need to develop more accurate and efficient monitoring system. The Namhee Bridge was constructed 35 years ago and it has been continually repaired and reinforced after then. This study describes the behavior of the cable system by analysing many of inspective reports and by using the results of hanger rope test and for the shape of main cables surveys.

Development of Robotic Inspection System over Bridge Superstructure (교량 상판 하부 안전점검 로봇개발)

  • Nam Soon-Sung;Jang Jung-Whan;Yang Kyung-Taek
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.180-185
    • /
    • 2003
  • The increase of traffic over a bridge has been emerged as one of the most severe problems in view of bridge maintenance, since the load effect caused by the vehicle passage over the bridge has brought out a long-term damage to bridge structure, and it is nearly impossible to maintain operational serviceability of bridge to user's satisfactory level without any concern on bridge maintenance at the phase of completion. Moreover, bridge maintenance operation should be performed by regular inspection over the bridge to prevent structural malfunction or unexpected accidents front breaking out by monitoring on cracks or deformations during service. Therefore, technical breakthrough related to this uninterested field of bridge maintenance leading the public to the turning point of recognition is desperately needed. This study has the aim of development on automated inspection system to lower surface of bridge superstructures to replace the conventional system of bridge inspection with the naked eye, where the monitoring staff is directly on board to refractive or other type of maintenance .vehicles, with which it is expected that we can solve the problems essentially where the results of inspection are varied to change with subjective manlier from monitoring staff, increase stabilities in safety during the inspection, and make contribution to construct data base by providing objective and quantitative data and materials through image processing method over data captured by cameras. By this system it is also expected that objective estimation over the right time of maintenance and reinforcement work will lead enormous decrease in maintenance cost.

  • PDF

Evaluation of Tension of Stay Cable using MBM (Measurement-based Model) (계측기반모델에 의한 사장케이블의 장력 평가)

  • Nam, Sang-Jin;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.93-100
    • /
    • 2014
  • This study presents the recomposition of MBM (measurement-based model) using natural frequencies and modes from the usually measured data, and the evaluation of cable tension in service from the analysis results upon MBM of existing CSB (cable stayed bridge). The cable tension is shown to be different according to the position attached to cable and loading type. The measured cable tensions are not different distinctly according to position attached cable under dead and live loads, but larger than those under design loads. The distribution of cable tension calculated upon the MBM is similar to those of measured tension although the former is more than those of cable tension upon the design model. Considering to long-term behaviors of cable, therefore, the design of cable in CSB needs to apply the analysis results on MBM. For this purpose, future study needs lots of measured data and MBM is used to analyze the long-term behavior of cable in CSB.

Evaluation of Thermal Movements of a Cable-Stayed Bridge Using Temperatures and Displacements Data (온도와 변위 데이터를 이용한 사장교의 온도신축거동 평가)

  • Park, Jong Chil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.779-789
    • /
    • 2015
  • Because cable-supported bridges have long spans and large members, their movements and geometrical changes by temperatures tend to be bigger than those of small or medium-sized bridges. Therefore, it is important for maintenance engineers to monitor and assess the effect of temperature on the cable-supported bridges. To evaluate how much the superstructure expands or contracts when subjected to changes in temperature is the first step for the maintenance. Thermal movements of a cable-stayed bridge in service are evaluated by using long-term temperatures and displacements data. Displacements data are obtained from extensometers and newly installed GNSS (Global Navigation Satellite System) receivers on the bridge. Based on the statistical data such as air temperatures, each sensor's temperatures, average temperatures and effective temperatures, correlation analysis between temperatures and displacements has been performed. Average temperatures or effective temperatures are most suitable for the evaluation of thermal movements. From linear regression analysis between effective temperatures and displacements, the variation rate's of displacement to temperature have been calculated. From additional regression analysis between expansion length's and variation rate's of displacement to temperature, the thermal expansion coefficient and neutral point have been estimated. Comparing these parameters with theoretical and analytical results, a practical procedure for evaluating the real thermal behaviors of the cable-supported bridges is proposed.

Semantic crack-image identification framework for steel structures using atrous convolution-based Deeplabv3+ Network

  • Ta, Quoc-Bao;Dang, Ngoc-Loi;Kim, Yoon-Chul;Kam, Hyeon-Dong;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.17-34
    • /
    • 2022
  • For steel structures, fatigue cracks are critical damage induced by long-term cycle loading and distortion effects. Vision-based crack detection can be a solution to ensure structural integrity and performance by continuous monitoring and non-destructive assessment. A critical issue is to distinguish cracks from other features in captured images which possibly consist of complex backgrounds such as handwritings and marks, which were made to record crack patterns and lengths during periodic visual inspections. This study presents a parametric study on image-based crack identification for orthotropic steel bridge decks using captured images with complicated backgrounds. Firstly, a framework for vision-based crack segmentation using the atrous convolution-based Deeplapv3+ network (ACDN) is designed. Secondly, features on crack images are labeled to build three databanks by consideration of objects in the backgrounds. Thirdly, evaluation metrics computed from the trained ACDN models are utilized to evaluate the effects of obstacles on crack detection results. Finally, various training parameters, including image sizes, hyper-parameters, and the number of training images, are optimized for the ACDN model of crack detection. The result demonstrated that fatigue cracks could be identified by the trained ACDN models, and the accuracy of the crack-detection result was improved by optimizing the training parameters. It enables the applicability of the vision-based technique for early detecting tiny fatigue cracks in steel structures.

Evaluation of Mechanical Characteristics of Castor Oil Based Bio-Polymer Concretes for Ultra Thin Overlays (피마자유를 이용한 초박층 덧씌우기용 바이오 폴리머 콘크리트의 역학적 특성 평가)

  • Park, Hee Mun;Choi, Ji Young;Kim, Tae Woo;Ahn, Young Jun;Le, Van Phuc
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.39-45
    • /
    • 2013
  • PURPOSES : The objective of this study is to evaluate the mechanical characteristics of castor oil based bio-polymer concrete for use of ultra thin overlays. METHODS : To evaluate the mechanical properties of bio-polymer concrete, the various laboratory tests including compressive, tensile, and flexural strength, and elongation tests were conducted on bio-polymer concrete specimens in this study. The mechanical characteristics of bio-polymer concretes were examined by changing the content of hardener and polymer binder to determine the optimum content for ultra-thin overlays. The bio-polymer concrete developed in this study was used for field trial test of the ultra-thin bridge deck pavement for verifying the workability and monitoring the long-term performance of materials. RESULTS : Test results showed that tensile and the flexural strength of bio-polymer concretes increase and the elongation of bio-polymer concrete decreases with increase of binder content. A field adhesive strength tests conducted on bridge deck pavement indicates the bio-polymer concrete has more than 2MPa of adhesive strength satisfy with the design criteria. CONCLUSIONS : The bio-polymer concrete with more than 20% content of castor oil was developed for ultra-thin overlays in this study. It is found from this study that the 35% of hardener content is most appropriate for maintaining the strength characteristics and flexibility.

Study on the Long-term Changes in Water Quality and Benthic Ecology and Evaluation on Effect of the Barrage in Nakdong River Estuary (낙동강 하구 수질 및 저서 생태의 장기 변화와 하굿둑의 영향 평가)

  • Park, Sohyun;Lee, Jiyoung;Choi, Jae Ung;Heo, Nakwon;An, Soonmo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.58-67
    • /
    • 2016
  • This study was performed to investigate the long-term changes in water quality and benthic ecology around the Nakdong River Estuary. The effect of the estuarine barrage on the ecosystem was also evaluated. The water quality was interpreted using the field survey (2013 and 2014) and monitoring data (MOE, 1989~2013) and the macrobenthic-fauna was investigated through analysis of the field survey data (2014) and literatures review (1985~2013). The long-term variation of water quality of Nakdong River generally showed increased nutrient concentration with decreased discharge, while abrupt influence of the barrage construction was not observed. However, the nutrient and organic matter concentration inside the barrage distinctly was higher than the concentration outside the barrage because the mixing of fresh and seawater was limited by the barrage. Especially, in the period of low discharge during winter, the Chlorophyll-a concentration clearly increased more in the downstream inside the barrage, showing the barrage effect. In other words, stagnant effect caused by barrage construction had an effect on the water quality degradation in dry seasons. As for the benthic ecology inside barrage after barrage construction, molluscans and brackish-water crustaceans disappeared. Outside the barrage, benthic ecosystem has deteriorated and the small-sized organic indicative species like Prionospio membranacea, Pseudopolydora kempi, Sinocorophium sinensis became dominant due to several construction such as Myeong-Gi Bridge, Airport construction, industrial complex after the Nakdong barrage construction.

Characristics and Management Plans of Myeongwoldae and Myeongwol Village Groves Located in, Jeju (제주 팽림월대(彭林月臺)의 경관특성 및 관리방안)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Chol, Yung-Hyun;Kahng, Byung-Seon;Kim, Young-Suk
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.68-81
    • /
    • 2014
  • This study was conducted to identify the spacialty, to illuminate the existence and values of Myeongwoldae(明月臺) and Forest Myeongwol, and to suggest the sustainable usage, preservation and management plans with the purpose of ecological and cultural landscaping characteristic and value identification. The result of the study is as follows. Castle Myeongwol and Port Myeongwol shows the status of Hallim-eup Myeongwol District which is the administrative center of western Jeju as well as is the fortress. Building Wolgyejeongsa and School Woohakdang, the head temple of education and culture, located in Myeongwol District represents the spaciality of Myeonwol-ri which was the center of education. Stand Myeongwol is one of the most representative Confucian cultural landscapes in Jeju Island and the field of communion with nature where scholars enjoy poetries, nature, changgi(Korean chess), and go in the Joseon Dynasty period. It was found that the current relics of Myeongwoldae was recovered through the maintenance project conducted by Youth Group Myeongwol composed with Hongjong-si(洪鍾時) as the center during the Japanese colonial era in 1931. It seems that the stonework of Myeongwoldae composed of three levels in the order of square, octagon, and circle based on the heaven-man unity theory of Confucianism and the octagon in the middle is the messenger of Cheonwonjibang(天圓地方), in other words, between the square-shaped earth and the circle-shaped sky. It is assumed that both Grand Bridge Myeongwol and Bridge Myeongwol were constructed as arched bridges in early days. Bridge Myeongwol is the only arched bridge remaining in Jeju Island now, which has the modern cultural heritage value. In Forest Myeongwol, 97 taxa of plants were confirmed and in accordance with 'Taxonomic Group and Class Criteria of Floristic Specific Plants', eight taxa were found; Arachniodes aristata of FD IV and Ilex cornuta, Piper kadsura, Litsea japonica, Melia azedarach, Xylosma congestum, Richosanthes kirilowii var. japonica, Dichondra repens, Viburnum odoratissimum var. awabuki of FD III. Otherwise, 14 taxa of naturalized plants including Apium leptophylihum which is imported to Jeju Island only were confirmed. In Forest Myeongwol, 77 trees including 41 Celtis sinensis, 30 Aphananthe aspera, two Wylosma congestum, a Pinus densiflora, a Camellia japonica, a Melia azedarach, and an Ilex cornuta form a colony. Based on the researched data, the preservation and plans of Myeongwoldae and Forest Myeongwol is suggested as follows. Myeongwoldae, Bridge Myeongwol, and Forest Myeongwol should be managed as one integrated division. Bridge Myeongwol, an arched bridge which is hard to be found in Jeju Island is a high-standard stonework requiring long-term preservation plans. Otherwise, Grand Bridge Myeongwol that is exposed to accident risks because of deterioration and needs safety diagnosis requires measures according to the result of precise safety diagnosis. It is desirable to restore it to a two-sluice arched bridge as its initial shape and to preserve and use it as a representative local landmark with Stand Myeongwol. In addition, considering the topophsis based on the analysis result, the current name of Jeju Special Self-Governing Province Monument No. 19 'Myoengwol Hackberry Colony' should change to 'Myeongwol Hackberry-Muku Tree Colony'. In addition, the serial number system which is composed without distinction of hackberry and muku tree should be improved and the regular monitoring of big and old trees, specific plants, and naturalized species is required.