• Title/Summary/Keyword: long-term antifungal effect

Search Result 7, Processing Time 0.022 seconds

Antifungal Performance of Hwangtoh Mortars with Natural Antifungal Substances (천연 항균물질을 이용한 황토모르타르의 항곰팡이 성능 평가)

  • So, Hyoung-Seok;Kim, Jung-Woo;Lee, Bo-Ram;So, Seung-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • This study discusses the long-term antifungal effect and antifungal performance of Hwangtoh mortars with various natural antifungal substances on five types of mold: Chaetomium globosum, Aspergillus niger, Aureobasidium pullulans, Gliocladium virens, and Penicillium pinophilum, which can be easily detected in the indoors and outdoors of buildings in damp environments. The antifungal performances of various natural antifungal substances extracted from Marjoram, Phytoncide, Thyme, Ginkgo leaves, and Chitosan (oligosaccharide) were investigated on the five types of mold, as a basic experiment. Using the natural antifungal substances selected for the basic experiment, antifungal mortars were made, and their antifungal performance and long-term antifungal effects were also investigated. The results clearly showed that the marjoram extract and their associated mortars had excellent antifungal performance. Also, their long-term antifungal effects were outstanding and at an equivalent level to those of the mortars with organic chemical antifungal agents. The optimum addition rate of the marjoram extract in the mortar was 5% by mass of binder. It was also shown that the phytoncide extract in the mortar needed an addition rate of more than 10% according to the mass of binder, considering the long-term antifungal effect and the antifungal performance.

Isolation and Identification of Antifungal Fatty Acids from the Extract of Common Purslane(Portulaca oleracea L.) (쇠비름 즙액에서 얻은 항균성 지방산의 분리 및 동정)

  • Park Jong Seong;Nishimura Shoyo;Marumo Shingo;Katayama Masato
    • Korean Journal Plant Pathology
    • /
    • v.2 no.2
    • /
    • pp.82-88
    • /
    • 1986
  • Five antifungal substances were isolated from the long-term storaged extract of common purslane, and identified as isobutyric, butyric, isovaleric, valerie and caproic acids belonging to short-chain fatty acids (C4­C6). Each of these fatty acids showed more or less antifungal potency against spore germination and mycelial growth of Alternaria alternata Japanese pear pathotype in vitro. Antifungal potency of each fatty acid against spore germination was greater than that against the mycelial growth. No one of these fatty acids completely inhibited the mycelial growth at concentration lower than 200 ppm, while 50 ppm of caproic acid and 200 ppm of valerie acid completely inhibited the spore germination. The results of bioassay also suggested that chain-length of the fatty acids might be related with the antifungal potency, since fatty acids with longer chain showed higher antifungal potency.

  • PDF

Antifungal Activity of Thymol against Aspergillus awamori and Botrytis aclada Isolated from Stored Onion Bulbs

  • Ji Yeon Oh;Siti Sajidah;Elena Volynchikova;Yu Jin Kim;Gyung Deok Han;Mee Kyung Sang;Ki Deok Kim
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.475-486
    • /
    • 2022
  • The antifungal activity of thymol against Aspergillus awamori F23 and Botrytis aclada F15 in onions was examined through direct treatment with amended media and gaseous treatment with I-plates (plastic plates containing central partitions). The protective and curative control efficacy of thymol was examined 24 h before and after the inoculation of onion bulbs with the fungal isolates. Mycelial growth, sporulation, and spore germination of the isolates were inhibited on potato dextrose agar amended with various concentrations of thymol or acetic acid (positive control). Overall, thymol produced a stronger inhibitory effect on the mycelial growth and development of the isolates than acetic acid. Following gaseous treatment in I-plates, mycelial growth, sporulation, and spore germination of the isolates were inhibited at higher concentrations of thymol or acetic acid; however, acetic acid showed a little effect on the sporulation and spore germination of the isolates. Following the treatment of onion bulbs with 1000 mg L-1 of thymol 24 h before and after fungal inoculation, lesion diameter was greatly reduced compared with that following treatment with 0.5% ethanol (solvent control). Onion bulbs sprayed with thymol 24 h before fungal inoculation generally showed reduced lesion diameters by isolate F23 but not in isolate F15 compared with those sprayed 24 h after fungal inoculation. Collectively, thymol effectively inhibited the growth and development of A. awamori and B. aclada on amended media and in I-plates. In addition, spraying or fumigation of thymol is more desirable for effectively controlling these postharvest fungal pathogens during long-term storage conditions.

Effect of culturing media on biocontrol ability and physiological state of Burkholderia gladioli strain B543.

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.87.2-87
    • /
    • 2003
  • Long-term repeated culturing of biocontrol agents on a certain medium often results in reduced biocontrol efficacy and altered physiology. Effect of culturing media on biocontrol ability and physiological state of Burkholderia gladioli strain B543 was investigated. Over 20 times repeated cultivation of B. giadioli strain B543 on Kings B medium or nutrient agar medium showed improved biological control of cucumber damping-off caused by Pythium ultimum, while one time cultivation on KB or NA did not. The repeated cultivation also induced the physiological changes of the biocontrol agent such as antifungal activity and the production of protease and siderophore. Our result indicates that adaptation to proper culturing medium can alter biocontrol ability and must consider in optimizing the use of biocontrol agents.

  • PDF

Prevention of Invasive Candida Infections in the Neonatal Intensive Care Unit (신생아 집중치료실에서 침습 칸디다 감염의 예방)

  • Kim, Chun Soo
    • Pediatric Infection and Vaccine
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • Invasive Candida infections (ICI) have become the third most common cause of late-onset infection among premature infants in the neonatal intensive care unit (NICU). Risk factors include birth weight less than 1,000 g, exposure to more than two antimicrobials, third generation cephalosporin exposure, parenteral nutrition including lipid emulsion, central venous catheter, and abdominal surgery. Candida colonization of the skin and gastrointestinal tract is an important first step in the pathogenesis of invasive disease. Strict infection control measures against the infection should be done in the NICU. The following practices are likely to contribute to reducing the rate of ICI: (1) restriction of broad-spectrum antibiotics, antacids and steroid; (2) introduction of early feeding and promoting breast milk. Fluconazole prophylaxis may be an effective control measure to prevent Candida colonization and infections in individual units with high incidence of fungal infection. In addition, there is a need of further data including the development of resistant strains and the effect on long-term neurodevelopmental outcomes of infants exposed to drugs before the initiation of routine application of antifungal prophylaxis in the NICU.

Industrial Application for Aquaculture of Fermented Soybean with Bacillus polyfermenticus SCD (양식업에서 바실러스 폴리퍼멘티쿠스 콩발효물의 상업적 응용)

  • Lee, Jin Young;Kim, Kang Min;Kang, Jae Seon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.48-54
    • /
    • 2007
  • Bacillus polyfermenticus SCD (B. polyfermenticus SCD) has been appropriately used for the therapy of long-term intestinal disorders, because live strains in the form of active endospores can successfully reach the target intestine in humans. B. polyfermenticus SCD produces the most antibiotic-related materials. In the present study, B. polyfermenticus SCD was fermented with soybeans (BPFS) and its probiotic properties were investigated. B. polyfermenticus SCD and BPFS showed a broad spectrum of antimicrobial activity against pathogenic Gram-positive (Streptococcus parauberis, Streptococcus iniae, Lactococcus garviae) and Gram-negative (Flexibacter tractuosus, Vibrio harveyi, Vibrio vulnificus, Vibrio ordalii) bacteria and moulds (Aspergillus niger, Aspergillus oryzae). Sebastes schlegeli were used to examine survival rate and cleanup action by BPFS. Bacterial infection resulted in a mortality of up to 99% in the commercial fodder fed groups. BPFS both enhanced the growth rate of fry by improving their appetite and had cleaned by decreased eutrophication. Therefore, it seems appropriate that BPFS should be developed as an antibiotic replacement, favorable fodder additive, and antifungal material in fish farming systems.

  • PDF

Silica Nanoparticles Suppress the Root Rot of Panax ginseg from Ilyonectria mors-panacis Infection by Reducing Sugar Efflux into Apoplast

  • Abbai, Ragavendran;Ahn, Jong-Chan;Mohanan, Padmanaban;Mathiyalagan, Ramya;Gokulanathan, Anandapadmanaban;Kim, Yu-Jin;Kim, Yoen-Ju;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.59-59
    • /
    • 2018
  • Panax ginseng Meyer (Korean ginseng) is in the spotlight of Oriental medicine and is proclaimed as the king of medicinal plants owing to its adaptogenic characteristics. Ginseng root rot is a devastating disease caused by the fungus, Ilyonectria mors-panacis that generally attacks younger roots (~2 years), leading to defects in root quality, ginsenoside accumulation and also life cycle of the plant. Hence, there is an indispensable need to develop strategies resulting in tolerance against ginseng root rot. In the present study, we evaluated the effect of silica nanoparticles(N-SiO2) in Panax ginseng during I. mors-panacis infection. Long term analysis (30 dpi) revealed a striking 50% reduction in disease severity index upon 1mM and 2mM treatment of N-SiO2. However, N-SiO2 did not have any direct antifungal activity against I. mors-panacis. Membrane bound sugar efflux transporter, SWEET (Sugars Will Eventually be Exported Transporters) was identified in ginseng and as expected, its expression was suppressed upon N-SiO2 treatment in the root rot pathosystem. Furthermore, the total and reducing sugars in the apoplastic fluid clearly revealed that N-SiO2 regulates sugar efflux into apoplast. In a nut shell, N-SiO2 administration induces transcriptional reprogramming in ginseng roots, leading to regulated sugar efflux into apoplast resulting in enhanced tolerance against I. mors-panacis.

  • PDF