• Title/Summary/Keyword: long-range dispersion model

Search Result 12, Processing Time 0.021 seconds

Validation of the Long-Range Atmospheric Dispersion Model (장거리 대기 확산모델 검증)

  • Suh, Kyung-Suk;Kim, Eun-Han;Whang, Won-Tae;Jeong, Hyo-Joon;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • A long-range atmospheric dispersion model named LADAS has been developed to understand the characteristics of the transport and diffusion of radioactive materials released into atmosphere. The developed numerical model for validation was compared with the results of the ETEX which is the long-range field tracer experiment. As a comparative study, the calculated concentration distributions agreed well in the case of the usage of the mixing heights calculated by the Richardson number than the usage of the constant mixing heights in LADAS model. Also, the calculated concentrations agreed with the time series of the measured ones at some sampling points.

Development of Long-Range Atmospheric Dispersion Model against a Nuclear Accident (원전 사고를 대비한 장거리 대기 확산모델 개발)

  • Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • The three-dimensional long-range dispersion model has been developed to understand the characteristics of the transport and diffusion of radioactive materials released into atmosphere. The model is designed to compute air concentration and ground deposition at distances up to some thousands of kilometers from the source point in horizontal direction. The vertical turbulent motion is considered separately within the mixing layer and above the mixing layer. The test simulation was performed In the area of Northeast Asia. The release point was assumed in the east part of China. The calculated concentration distributions art mainly advected toward the southeast part of release point by the wind fields. The developed model will be used to estimate the radiological consequences against a nuclear accident. The model will be supplemented by the comparative study using the data of the long-range field experiments.

Consideration of Long and Middle Range Interaction on the Calculation of Activities for Binary Polymer Solutions

  • Lee, Seung-Seok;Bae, Young-Chan;Sun, Yang-Kook;Kim, Jae-Jun
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.320-328
    • /
    • 2008
  • We established a thermodynamic framework of group contribution method based on modified double lattice (MDL) model. The proposed model included the long-range interaction contribution caused by the Coulomb electrostatic forces, the middle-range interaction contribution from the indirect effects of the charge interactions and the short-range interaction from modified double lattice model. The group contribution method explained the combinatorial energy contribution responsible for the revised Flory-Huggins entropy of mixing, the van der Waals energy contribution from dispersion, the polar force, and the specific energy contribution from hydrogen bonding. We showed the solvent activities of various polymer solution systems in comparison with theoretical predictions based on experimental data. The proposed model gave a very good agreement with the experimental data.

Development of a Dynamic Downscaling Method for Use in Short-Range Atmospheric Dispersion Modeling Near Nuclear Power Plants

  • Sang-Hyun Lee;Su-Bin Oh;Chun-Ji Kim;Chun-Sil Jin;Hyun-Ha Lee
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.28-43
    • /
    • 2023
  • Background: High-fidelity meteorological data is a prerequisite for the realistic simulation of atmospheric dispersion of radioactive materials near nuclear power plants (NPPs). However, many meteorological models frequently overestimate near-surface wind speeds, failing to represent local meteorological conditions near NPPs. This study presents a new high-resolution (approximately 1 km) meteorological downscaling method for modeling short-range (< 100 km) atmospheric dispersion of accidental NPP plumes. Materials and Methods: Six considerations from literature reviews have been suggested for a new dynamic downscaling method. The dynamic downscaling method is developed based on the Weather Research and Forecasting (WRF) model version 3.6.1, applying high-resolution land-use and topography data. In addition, a new subgrid-scale topographic drag parameterization has been implemented for a realistic representation of the atmospheric surface-layer momentum transfer. Finally, a year-long simulation for the Kori and Wolsong NPPs, located in southeastern coastal areas, has been made for 2016 and evaluated against operational surface meteorological measurements and the NPPs' on-site weather stations. Results and Discussion: The new dynamic downscaling method can represent multiscale atmospheric motions from the synoptic to the boundary-layer scales and produce three-dimensional local meteorological fields near the NPPs with a 1.2 km grid resolution. Comparing the year-long simulation against the measurements showed a salient improvement in simulating near-surface wind fields by reducing the root mean square error of approximately 1 m/s. Furthermore, the improved wind field simulation led to a better agreement in the Eulerian estimate of the local atmospheric dispersion. The new subgrid-scale topographic drag parameterization was essential for improved performance, suggesting the importance of the subgrid-scale momentum interactions in the atmospheric surface layer. Conclusion: A new dynamic downscaling method has been developed to produce high-resolution local meteorological fields around the Kori and Wolsong NPPs, which can be used in short-range atmospheric dispersion modeling near the NPPs.

Debris Dispersion and Falling Prediction Modeling Using AUTODYN to Determine Interception Test Evaluation for Safety Zone (요격시험평가 안전구역 설정을 위한 AUTODYN을 이용한 파편분산 및 낙하 예측 모델링)

  • Kang, Bohyun;Kim, Sangho;Park, Kisoon;Chung, Bongcheul;Lee, Seokwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.745-753
    • /
    • 2019
  • Recently, with the development of long-range / high-altitude guided weapon system for defense against ballistic missile, test range and firing altitude for guided weapons are increasing. Due to the increase in the test range and the intercepting altitude, it is expected to increase the range of safety area required for the firing test. Comparing to the foreign countries which have many desert or non-residence, in the domestic circumstances where the population is concentrated and distributed, it is more important to predict the falling area and to set the safety area for safely carry out the long-range / high-altitude intercept test. In this paper, we consider the following three points. The first is the booster fall trajectory modeling, the second is the shroud fall trajectory modeling, and finally, the debris dispersion modeling for the missile intercept. Especially, the AUTODYN model was used to predict debris falling area which produced in the high-speed guided missile intercepting test.

Numerical Simulation of Tracer Distribution during CAPTEX (CAPTEX 자료에 나타난 추적물 농도 분포의 수치 모사)

  • Kim, Seung-Bum;Lee, Tae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.357-370
    • /
    • 1994
  • This paper introduces an Eulerian long- range transport model coupled with a mesoscale atmospheric model. The model has been applied to the simulation of tracer distribution during two cases of Cross Appalachian Tracer Experiment (CAPIEX). Meteorological fields are Predicted by CSU RAMS with four-dimensional assimilation and tracer transport is computed from an Eulerian dispersion model. The atmospheric model with a four-dimensional assimilation has produced meteorological fields that agree well with observation and has proved its high potential as a generator of meteorological data for a long-range transport model. The Present transport model Produces reasonable simulations of observed tracer transport although it was partially successful in the case with complicated structure in observed concentration. Model with Bott's 2nd-order scheme performs as well as that with Bott's 4th-order scheme and increased explicit horizontal diffusivity. Diagnosis of the model results indicates that the Present long-range transport model has a good potential as a framework for the acid deposition model with detailed cloud and chemical processes.

  • PDF

A Numerical Study on the Vertical Distribution of PM concentration during Asian Dust

  • Cho, Changbum;Kim, Yoo-Keun;Lim, Yunkyu;Lee, Pyeongkeun;Oh, Sung-Nam
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.51-52
    • /
    • 2003
  • A numerical study on PM using a dispersion and deposition model which can analyze for both quantify and quality would not only offer us to understand our environment more easily, but also make it easy that we can make a plan in order to prevent air pollution. The U.S. EPA has proposed the CALPUFF modeling system as a guideline model for regulatory applications involving long-range transport and on a case-by-case basis for near-field applications where. non- steady- state effects which consider situations such as spatial variability in the meteorological fields, calm winds, fumigations, re-circulation or stagnation, and terrain or coastal effects may be important. (omitted)

  • PDF

Kinetic Behavior of Immobilized Tyrosinase on Carbon in a Simulated Packed-Bed Reactor (충전층에서 탄소에 고정시킨 Tyrosinase의 반응속도에 관한 연구)

  • Shin, Sun Kyoung;Kim, Kyeo-Keun
    • Analytical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.66-74
    • /
    • 1997
  • Influence of the axial dispersion on immobilized enzyme catalytic bed was investigated in order to examine the kinetic behavior of the biocatalysis. The enzyme employed in this study was the tyrosinase(EC 1.14.18.1) immobilized on carbon support : this system requires two substrates of phenol and oxygen. This enzyme has potential application for phenol degradation in waste water. A simulated reactor was a packed-bed reactor of 2.54cm in diameter and 10cm long, loaded with the immobilized carbon particle with an average diameter of $550{\mu}m$. A phenol feed in the strength of 55.5mM(5220ppm) was used to observe the behavior of the immobilized enzyme column at three different dissolved oxygen levels of 0.08445mM(2.7ppm), 0.1689mM(5.4ppm) and 0.3378mM(9.5ppm) with the flow rates in the range of 60(1mL/s) to 180mL/min(3mL/s). Examination of the Biot number and Damkolher numbers of the immobilized system enables us to eliminate the contribution of external mass transfer to set of differential equations derived from the dispersion model. Solution of the equation was finally obtained numerically with the application of the Danckwert boundary conditions and the assumed zero-and first order rates on the non-linear two substrate enzyme kinetics. Higher conversion of phenol was observed at the low flow rates and at the higher oxygen concentration. Comparison of axial dispersion and plug flow model showed that no detectable difference was observed in the column outlet conversion between the axial and the plug flow models which was in complete agreement with the previous studies.

  • PDF

Assessment of Soil Loss at Military Shooting Range by RUSLE Model: Correlation Between Soil Loss and Migration of Explosive Compounds (RUSLE 모델에 의한 군사격장 피탄지 토양유실량 평가: 토양 유실과 오염 화약물질 이동 상관성)

  • Gong, Hyo-Young;Lee, Kwang-Pyo;Lee, Jong-Yeol;Kim, Bumjoon;Lee, Ahreum;Bae, Bumhan;Kim, Ji-Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.119-128
    • /
    • 2012
  • The applicability and accuracy of Revised Universal Soil Loss Equation (RUSLE) model on the estimation of soil loss at impacted area of shooting range was tested to further the understanding of soil erosion at shooting ranges by using RUSLE. At a shooting range located in northern Kyunggi, the amount of soil loss was estimated by RUSLE model and compared with that estimated by Global Positioning System-Total Station survey. As results, the annual soil loss at a study site (202 m long by 79 m wide) was estimated to be 2,915 ton/ha/year by RUSLE and 3,058 ton/ha/year by GPS-TS survey, respectively. The error between two different estimations was less than 5%, however, information on site conditions should be collected more to adjust model coefficients accurately. At the study shooting range, sediments generated by rainfall was transported from the top to near the bottom of the sloping face through sheet erosion as well as rill erosion, forming a gully along the direction of the storm water flow. Coarser fractions of the sediments were redeposited in the limited area along the channel. Distribution characteristics of explosive compounds in soil before and after summer monsoon rainfall in the study area were compared with the erosion patterns. Soil sampling and analyses results showed that the dispersion of explosive compounds in surface soil was consistent with the characteristics of soil erosion and redeposition pattern of sediment movements after rainfalls.

SWR as Tool for Determination of the Surface Magnetic Anisotropy Energy Constant

  • Maksymowicz, L.J.;Lubecka, M.;Jablonski, R.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.105-111
    • /
    • 1998
  • The low energy excitations of spin waves (SWR) in thin films can be used for determination of the surface anisotropy constant and the nonhomogeneities of magnetization in the close-to-surface layer. The dispersion relation in SWR is sensitive on the geometry of experiment. We report on temperature dependence of surface magnetic anisotropy energy constant in magnetic semiconductor thin films of$ CdCr_{2-2x}In_{2x}Se_4$ at spin glass state. Samples were deposited by rf sputtering technique on Corning glass substrate in controlled temperature conditions. Coexistence of the infinite ferromagnetic network (IFN) and finite spin slusters (FSC) in spin glass state (SG) is know phenomena. Some behavior typical for long range magnetic ordering is expected in samples at SG state. The spin wave resonance experiment (microwave spectrometer at X-band) with excited surface modes was applied to describe the energy state of surface spins. We determined the surface magnetic anisotropy energy constant versus temperature using the surface inhomogeneities model of magnetic thin films. It was found that two components contribute to the surface magnetic anisotropy energy. One originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the stray field of the surface roughness. The second one comes from the demagnetizing field of close-to surface layer with grad M. Both term linearly decrease when temperature is increased from 5 to 123 K, but dominant contribution is from the first component.

  • PDF