• Title/Summary/Keyword: long term neural network

Search Result 395, Processing Time 0.032 seconds

Adaptive Antenna Muting using RNN-based Traffic Load Prediction (재귀 신경망에 기반을 둔 트래픽 부하 예측을 이용한 적응적 안테나 뮤팅)

  • Ahmadzai, Fazel Haq;Lee, Woongsup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.633-636
    • /
    • 2022
  • The reduction of energy consumption at the base station (BS) has become more important recently. In this paper, we consider the adaptive muting of the antennas based on the predicted future traffic load to reduce the energy consumption where the number of active antennas is adaptively adjusted according to the predicted future traffic load. Given that traffic load is sequential data, three different RNN structures, namely long-short term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (Bi-LSTM) are considered for the future traffic load prediction. Through the performance evaluation based on the actual traffic load collected from the Afghanistan telecom company, we confirm that the traffic load can be estimated accurately and the overall power consumption can also be reduced significantly using the antenna musing.

Behavior Recognition of Moving Object based on Multi-Fusion Network (다중 융합 네트워크 기반 이동 객체 행동 인식)

  • Kim, Jinah;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.641-642
    • /
    • 2022
  • 단일 데이터로부터의 이동 객체에 대한 행동 인식 연구는 데이터 수집 과정에서 발생하는 노이즈의 영향을 크게 받는다. 본 논문은 영상 데이터와 센서 데이터를 이용하여 다중 융합 네트워크 기반 이동 객체 행동 인식 방법을 제안한다. 영상으로부터 객체가 감지된 영역의 추출과 센서 데이터의 이상치 제거 및 결측치 보간을 통해 전처리된 데이터들을 융합하여 시퀀스를 생성한다. 생성된 시퀀스는 CNN(Convolutional Neural Networks)과 LSTM(Long Short Term Memory)기반 다중 융합 네트워크 모델을 통해 시계열에 따른 행동 특징들을 추출하고, 깊은 FC(Fully Connected) 계층을 통해 특징들을 융합하여 행동을 예측한다. 본 연구에서 제시된 방법은 사람을 포함한 동물, 로봇 등의 다양한 객체에 적용될 수 있다.

Real-Time Lip Reading System Implementation Based on Deep Learning (딥러닝 기반의 실시간 입모양 인식 시스템 구현)

  • Cho, Dong-Hun;Kim, Won-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.267-269
    • /
    • 2020
  • 입모양 인식(Lip Reading) 기술은 입술 움직임을 통해 발화를 분석하는 기술이다. 본 논문에서는 일상적으로 사용하는 10개의 상용구에 대해서 발화자의 안면 움직임 분석을 통해 실시간으로 분류하는 연구를 진행하였다. 시간상의 연속된 순서를 가진 영상 데이터의 특징을 고려하여 3차원 합성곱 신경망 (Convolutional Neural Network)을 사용하여 진행하였지만, 실시간 시스템 구현을 위해 연산량 감소가 필요했다. 이를 해결하기 위해 차 영상을 이용한 2차원 합성곱 신경망과 LSTM 순환 신경망 (Long Short-Term Memory) 결합 모델을 설계하였고, 해당 모델을 이용하여 실시간 시스템 구현에 성공하였다.

  • PDF

Online Signature Verification using General Handwriting Data and CNN (일반 필기데이터와 CNN을 이용한 온라인 서명인식)

  • PARK, MINJU;YOUN, HEE YONG
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.540-543
    • /
    • 2020
  • 본 논문에서는 대표적인 이미지 분류 모델인 CNN(Convolutional Neural Network)과 시간에 따른 이미지의 변화를 학습할 수 있는 LSTM(Long Short-Term Memory) 기반의 온라인 서명인식 모델을 제안한다. 실제로는 위조서명을 미리 구하기 어렵다는 사실을 고려해 서명검증 대상자가 아닌 타인의 진서명과 대상자의 일반 필기 데이터를 음의 데이터로서 학습에 사용하였다. 실험 결과, 전체 이미지 중 서명 부분의 비율에 따라 좋은 성능을 보이는 검증 모델이 다르며 Accuracy 성능지표를 통해 이 비율이 높거나 낮을 경우 CNN-LSTM 이, 중간일 경우 CNN 이 적합하다는 것을 확인하였다.

Research Paper Classification Scheme based on CNN with LSTM and GRU (CNN과 LSTM 및 GRU 기반 연구 논문 분류 시스템의 설계 및 구현)

  • Dipto, Biswas;Kang, Jihun;Gil, Joon-Min
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.612-614
    • /
    • 2022
  • 최근 딥러닝 기술은 자연어처리에서 기본적이고 필수적인 기법으로 자연어처리에 필요한 복잡한 비선형 관계를 모델링할 수 있다. 본 논문에서는 LSTM(Long Short-Term Memory)과 GRU(Gated Recurrent Unit) 딥러닝 기술을 연구 논문 분류에 적용하며, CNN(Convolutional Neural Network)에 LSTM과 GRU을 각각 결합하여 특정 분야의 연구 논문을 분류하고 연구 논문을 추천하는 기법을 제안한다. 워드 임베딩과 딥러닝 기법을 연구 논문 분류에 적용하여 관심이 있는 단어와 단어 주변의 단어들 사이의 유사성과 성능을 비교 분석한다.

Performance Evaluation of Concrete Drying Shrinkage Prediction Using DNN and LSTM (DNN과 LSTM을 활용한 콘크리트의 건조수축량 예측성능 평가)

  • Han, Jun-Hui;Lim, Gun-Su;Lee, Hyeon-Jik;Park, Jae-Woong;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.179-180
    • /
    • 2023
  • In this study, the performance of the prediction model was compared and analyzed using DNN and LSTM learning models to predict the amount of dry shrinkage of the concrete. As a result of the analysis, DNN model had a high error rate of about 51%, indicating overfitting to the training data. But, the LSTM learning model showed a relatively higher accuracy with an error rate of 12% compared to the DNN model. Also, the Pre_LSTM model which preprocess data, showed the performance with an error rate of 9% and a coefficient of determination of 0.887 in the LSTM learning model.

  • PDF

1D-CNN-LSTM Hybrid-Model-Based Pet Behavior Recognition through Wearable Sensor Data Augmentation

  • Hyungju Kim;Nammee Moon
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.159-172
    • /
    • 2024
  • The number of healthcare products available for pets has increased in recent times, which has prompted active research into wearable devices for pets. However, the data collected through such devices are limited by outliers and missing values owing to the anomalous and irregular characteristics of pets. Hence, we propose pet behavior recognition based on a hybrid one-dimensional convolutional neural network (CNN) and long short- term memory (LSTM) model using pet wearable devices. An Arduino-based pet wearable device was first fabricated to collect data for behavior recognition, where gyroscope and accelerometer values were collected using the device. Then, data augmentation was performed after replacing any missing values and outliers via preprocessing. At this time, the behaviors were classified into five types. To prevent bias from specific actions in the data augmentation, the number of datasets was compared and balanced, and CNN-LSTM-based deep learning was performed. The five subdivided behaviors and overall performance were then evaluated, and the overall accuracy of behavior recognition was found to be about 88.76%.

Development of an Electric Scooter Safety System Based on CNN and LSTM (CNN 및 LSTM 기반의 전동킥보드 안전시스템 개발)

  • Sang-Un Baek;Seok-Hyeon Baek;Hyen-Chang Woo;Ji-Sang You;Joo-Ron Lim
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.926-927
    • /
    • 2024
  • 최근 개인형 이동장치(PM, Personal Mobility) 사용 증가에 따라 전동 킥보드 사고 발생 빈도가 높아지면서, 전동 킥보드 사용자의 인식과 안전성 확보가 대두되었다. 본 시스템은 해당 문제를 해결책으로 CNN(Convolutional Neural Network)과 CNN-LSTM(Long Short Term Memory) 기반의 인공 지능 모델로 다인승 탑승, 인도 및 차도 주행, 헬멧 착용 여부를 실시간으로 감지, 안전 기준을 충족하지 않는 경우 자동으로 출력 제한을 적용함으로써 사용자에게는 안전 인식을 각인시키며 큰 사고의 발생 위험을 줄이는 데 기여할 수 있다. 즉, 전동 킥보드의 안전성을 높이고, 인명 사고를 예방하는 데 기여할 것으로 기대된다.

  • PDF

Short-Term Crack in Sewer Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model (CNN-LSTM 합성모델에 의한 하수관거 균열 예측모델)

  • Jang, Seung-Ju;Jang, Seung-Yup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.11-19
    • /
    • 2022
  • In this paper, we propose a GoogleNet transfer learning and CNN-LSTM combination method to improve the time-series prediction performance for crack detection using crack data captured inside the sewer pipes. LSTM can solve the long-term dependency problem of CNN, so spatial and temporal characteristics can be considered at the same time. The predictive performance of the proposed method is excellent in all test variables as a result of comparing the RMSE(Root Mean Square Error) for time series sections using the crack data inside the sewer pipe. In addition, as a result of examining the prediction performance at the time of data generation, the proposed method was verified that it is effective in predicting crack detection by comparing with the existing CNN-only model. If the proposed method and experimental results obtained through this study are utilized, it can be applied in various fields such as the environment and humanities where time series data occurs frequently as well as crack data of concrete structures.

Development of new artificial neural network optimizer to improve water quality index prediction performance (수질 지수 예측성능 향상을 위한 새로운 인공신경망 옵티마이저의 개발)

  • Ryu, Yong Min;Kim, Young Nam;Lee, Dae Won;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.73-85
    • /
    • 2024
  • Predicting water quality of rivers and reservoirs is necessary for the management of water resources. Artificial Neural Networks (ANNs) have been used in many studies to predict water quality with high accuracy. Previous studies have used Gradient Descent (GD)-based optimizers as an optimizer, an operator of ANN that searches parameters. However, GD-based optimizers have the disadvantages of the possibility of local optimal convergence and absence of a solution storage and comparison structure. This study developed improved optimizers to overcome the disadvantages of GD-based optimizers. Proposed optimizers are optimizers that combine adaptive moments (Adam) and Nesterov-accelerated adaptive moments (Nadam), which have low learning errors among GD-based optimizers, with Harmony Search (HS) or Novel Self-adaptive Harmony Search (NSHS). To evaluate the performance of Long Short-Term Memory (LSTM) using improved optimizers, the water quality data from the Dasan water quality monitoring station were used for training and prediction. Comparing the learning results, Mean Squared Error (MSE) of LSTM using Nadam combined with NSHS (NadamNSHS) was the lowest at 0.002921. In addition, the prediction rankings according to MSE and R2 for the four water quality indices for each optimizer were compared. Comparing the average of ranking for each optimizer, it was confirmed that LSTM using NadamNSHS was the highest at 2.25.