• Title/Summary/Keyword: long term neural network

Search Result 395, Processing Time 0.029 seconds

Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable (기상 변수를 고려한 모델에 의한 단기 최대전력수요예측)

  • 고희석;이충식;최종규;지봉호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.73-78
    • /
    • 2001
  • BP neural network model and multiple-regression model were composed for forecasting the special-days load. Special-days load was forecasted using that neural network model made use of pattern conversion ratio and multiple-regression made use of weekday-change ratio. This methods identified the suitable as that special-days load of short and long term was forecasted with the weekly average percentage error of 1∼2[%] in the weekly peak load forecasting model using pattern conversion ratio. But this methods were hard with special-days load forecasting of summertime. therefore it was forecasted with the multiple-regression models. This models were used to the weekday-change ratio, and the temperature-humidity and discomfort-index as explanatory variable. This methods identified the suitable as that compared forecasting result of weekday load with forecasting result of special-days load because months average percentage error was alike. And, the fit of the presented forecast models using statistical tests had been proved. Big difficult problem of peak load forecasting had been solved that because identified the fit of the methods of special-days load forecasting in the paper presented.

  • PDF

A Study of Efficiency Information Filtering System using One-Hot Long Short-Term Memory

  • Kim, Hee sook;Lee, Min Hi
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • In this paper, we propose an extended method of one-hot Long Short-Term Memory (LSTM) and evaluate the performance on spam filtering task. Most of traditional methods proposed for spam filtering task use word occurrences to represent spam or non-spam messages and all syntactic and semantic information are ignored. Major issue appears when both spam and non-spam messages share many common words and noise words. Therefore, it becomes challenging to the system to filter correct labels between spam and non-spam. Unlike previous studies on information filtering task, instead of using only word occurrence and word context as in probabilistic models, we apply a neural network-based approach to train the system filter for a better performance. In addition to one-hot representation, using term weight with attention mechanism allows classifier to focus on potential words which most likely appear in spam and non-spam collection. As a result, we obtained some improvement over the performances of the previous methods. We find out using region embedding and pooling features on the top of LSTM along with attention mechanism allows system to explore a better document representation for filtering task in general.

S2-Net: Machine reading comprehension with SRU-based self-matching networks

  • Park, Cheoneum;Lee, Changki;Hong, Lynn;Hwang, Yigyu;Yoo, Taejoon;Jang, Jaeyong;Hong, Yunki;Bae, Kyung-Hoon;Kim, Hyun-Ki
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.371-382
    • /
    • 2019
  • Machine reading comprehension is the task of understanding a given context and finding the correct response in that context. A simple recurrent unit (SRU) is a model that solves the vanishing gradient problem in a recurrent neural network (RNN) using a neural gate, such as a gated recurrent unit (GRU) and long short-term memory (LSTM); moreover, it removes the previous hidden state from the input gate to improve the speed compared to GRU and LSTM. A self-matching network, used in R-Net, can have a similar effect to coreference resolution because the self-matching network can obtain context information of a similar meaning by calculating the attention weight for its own RNN sequence. In this paper, we construct a dataset for Korean machine reading comprehension and propose an $S^2-Net$ model that adds a self-matching layer to an encoder RNN using multilayer SRU. The experimental results show that the proposed $S^2-Net$ model has performance of single 68.82% EM and 81.25% F1, and ensemble 70.81% EM, 82.48% F1 in the Korean machine reading comprehension test dataset, and has single 71.30% EM and 80.37% F1 and ensemble 73.29% EM and 81.54% F1 performance in the SQuAD dev dataset.

A Deep Learning Model for Extracting Consumer Sentiments using Recurrent Neural Network Techniques

  • Ranjan, Roop;Daniel, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.238-246
    • /
    • 2021
  • The rapid rise of the Internet and social media has resulted in a large number of text-based reviews being placed on sites such as social media. In the age of social media, utilizing machine learning technologies to analyze the emotional context of comments aids in the understanding of QoS for any product or service. The classification and analysis of user reviews aids in the improvement of QoS. (Quality of Services). Machine Learning algorithms have evolved into a powerful tool for analyzing user sentiment. Unlike traditional categorization models, which are based on a set of rules. In sentiment categorization, Bidirectional Long Short-Term Memory (BiLSTM) has shown significant results, and Convolution Neural Network (CNN) has shown promising results. Using convolutions and pooling layers, CNN can successfully extract local information. BiLSTM uses dual LSTM orientations to increase the amount of background knowledge available to deep learning models. The suggested hybrid model combines the benefits of these two deep learning-based algorithms. The data source for analysis and classification was user reviews of Indian Railway Services on Twitter. The suggested hybrid model uses the Keras Embedding technique as an input source. The suggested model takes in data and generates lower-dimensional characteristics that result in a categorization result. The suggested hybrid model's performance was compared using Keras and Word2Vec, and the proposed model showed a significant improvement in response with an accuracy of 95.19 percent.

Video Representation via Fusion of Static and Motion Features Applied to Human Activity Recognition

  • Arif, Sheeraz;Wang, Jing;Fei, Zesong;Hussain, Fida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3599-3619
    • /
    • 2019
  • In human activity recognition system both static and motion information play crucial role for efficient and competitive results. Most of the existing methods are insufficient to extract video features and unable to investigate the level of contribution of both (Static and Motion) components. Our work highlights this problem and proposes Static-Motion fused features descriptor (SMFD), which intelligently leverages both static and motion features in the form of descriptor. First, static features are learned by two-stream 3D convolutional neural network. Second, trajectories are extracted by tracking key points and only those trajectories have been selected which are located in central region of the original video frame in order to to reduce irrelevant background trajectories as well computational complexity. Then, shape and motion descriptors are obtained along with key points by using SIFT flow. Next, cholesky transformation is introduced to fuse static and motion feature vectors to guarantee the equal contribution of all descriptors. Finally, Long Short-Term Memory (LSTM) network is utilized to discover long-term temporal dependencies and final prediction. To confirm the effectiveness of the proposed approach, extensive experiments have been conducted on three well-known datasets i.e. UCF101, HMDB51 and YouTube. Findings shows that the resulting recognition system is on par with state-of-the-art methods.

Analysis and Prediction Methods of Marine Accident Patterns related to Vessel Traffic using Long Short-Term Memory Networks (장단기 기억 신경망을 활용한 선박교통 해양사고 패턴 분석 및 예측)

  • Jang, Da-Un;Kim, Joo-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.780-790
    • /
    • 2022
  • Quantitative risk levels must be presented by analyzing the causes and consequences of accidents and predicting the occurrence patterns of the accidents. For the analysis of marine accidents related to vessel traffic, research on the traffic such as collision risk analysis and navigational path finding has been mainly conducted. The analysis of the occurrence pattern of marine accidents has been presented according to the traditional statistical analysis. This study intends to present a marine accident prediction model using the statistics on marine accidents related to vessel traffic. Statistical data from 1998 to 2021, which can be accumulated by month and hourly data among the Korean domestic marine accidents, were converted into structured time series data. The predictive model was built using a long short-term memory network, which is a representative artificial intelligence model. As a result of verifying the performance of the proposed model through the validation data, the RMSEs were noted to be 52.5471 and 126.5893 in the initial neural network model, and as a result of the updated model with observed datasets, the RMSEs were improved to 31.3680 and 36.3967, respectively. Based on the proposed model, the occurrence pattern of marine accidents could be predicted by learning the features of various marine accidents. In further research, a quantitative presentation of the risk of marine accidents and the development of region-based hazard maps are required.

Korean Semantic Role Labeling with Highway BiLSTM-CRFs (Highway BiLSTM-CRFs 모델을 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.159-162
    • /
    • 2017
  • Long Short-Term Memory Recurrent Neural Network(LSTM RNN)는 순차 데이터 모델링에 적합한 딥러닝 모델이다. Bidirectional LSTM RNN(BiLSTM RNN)은 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN을 입력 데이터의 양 방향에 적용시킨 것으로 입력 열의 모든 정보를 볼 수 있는 장점이 있어 자연어처리를 비롯한 다양한 분야에서 많이 사용되고 있다. Highway Network는 비선형 변환을 거치지 않은 입력 정보를 히든레이어에서 직접 사용할 수 있게 LSTM 유닛에 게이트를 추가한 딥러닝 모델이다. 본 논문에서는 Highway Network를 한국어 의미역 결정에 적용하여 기존 연구 보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

Korean Semantic Role Labeling with Highway BiLSTM-CRFs (Highway BiLSTM-CRFs 모델을 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki;Kim, Hyunki
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.159-162
    • /
    • 2017
  • Long Short-Term Memory Recurrent Neural Network(LSTM RNN)는 순차 데이터 모델링에 적합한 딥러닝 모델이다. Bidirectional LSTM RNN(BiLSTM RNN)은 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN을 입력 데이터의 양 방향에 적용시킨 것으로 입력 열의 모든 정보를 볼 수 있는 장점이 있어 자연어처리를 비롯한 다양한 분야에서 많이 사용되고 있다. Highway Network는 비선형 변환을 거치지 않은 입력 정보를 히든레이어에서 직접 사용할 수 있게 LSTM 유닛에 게이트를 추가한 딥러닝 모델이다. 본 논문에서는 Highway Network를 한국어 의미역 결정에 적용하여 기존 연구 보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

Development of Prediction Model for Nitrogen Oxides Emission Using Artificial Intelligence (인공지능 기반 질소산화물 배출량 예측을 위한 연구모형 개발)

  • Jo, Ha-Nui;Park, Jisu;Yun, Yongju
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.588-595
    • /
    • 2020
  • Prediction and control of nitrogen oxides (NOx) emission is of great interest in industry due to stricter environmental regulations. Herein, we propose an artificial intelligence (AI)-based framework for prediction of NOx emission. The framework includes pre-processing of data for training of neural networks and evaluation of the AI-based models. In this work, Long-Short-Term Memory (LSTM), one of the recurrent neural networks, was adopted to reflect the time series characteristics of NOx emissions. A decision tree was used to determine a time window of LSTM prior to training of the network. The neural network was trained with operational data from a heating furnace. The optimal model was obtained by optimizing hyper-parameters. The LSTM model provided a reliable prediction of NOx emission for both training and test data, showing an accuracy of 93% or more. The application of the proposed AI-based framework will provide new opportunities for predicting the emission of various air pollutants with time series characteristics.

Development of Long-Term Electricity Demand Forecasting Model using Sliding Period Learning and Characteristics of Major Districts (주요 지역별 특성과 이동 기간 학습 기법을 활용한 장기 전력수요 예측 모형 개발)

  • Gong, InTaek;Jeong, Dabeen;Bak, Sang-A;Song, Sanghwa;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.63-72
    • /
    • 2019
  • For power energy, optimal generation and distribution plans based on accurate demand forecasts are necessary because it is not recoverable after they have been delivered to users through power generation and transmission processes. Failure to predict power demand can cause various social and economic problems, such as a massive power outage in September 2011. In previous studies on forecasting power demand, ARIMA, neural network models, and other methods were developed. However, limitations such as the use of the national average ambient air temperature and the application of uniform criteria to distinguish seasonality are causing distortion of data or performance degradation of the predictive model. In order to improve the performance of the power demand prediction model, we divided Korea into five major regions, and the power demand prediction model of the linear regression model and the neural network model were developed, reflecting seasonal characteristics through regional characteristics and migration period learning techniques. With the proposed approach, it seems possible to forecast the future demand in short term as well as in long term. Also, it is possible to consider various events and exceptional cases during a certain period.

  • PDF