• Title/Summary/Keyword: long term neural network

Search Result 395, Processing Time 0.027 seconds

A Study on Korean Sentiment Analysis Rate Using Neural Network and Ensemble Combination

  • Sim, YuJeong;Moon, Seok-Jae;Lee, Jong-Youg
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.268-273
    • /
    • 2021
  • In this paper, we propose a sentiment analysis model that improves performance on small-scale data. A sentiment analysis model for small-scale data is proposed and verified through experiments. To this end, we propose Bagging-Bi-GRU, which combines Bi-GRU, which learns GRU, which is a variant of LSTM (Long Short-Term Memory) with excellent performance on sequential data, in both directions and the bagging technique, which is one of the ensembles learning methods. In order to verify the performance of the proposed model, it is applied to small-scale data and large-scale data. And by comparing and analyzing it with the existing machine learning algorithm, Bi-GRU, it shows that the performance of the proposed model is improved not only for small data but also for large data.

Deepfake Detection using Supervised Temporal Feature Extraction model and LSTM (지도 학습한 시계열적 특징 추출 모델과 LSTM을 활용한 딥페이크 판별 방법)

  • Lee, Chunghwan;Kim, Jaihoon;Yoon, Kijung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.91-94
    • /
    • 2021
  • As deep learning technologies becoming developed, realistic fake videos synthesized by deep learning models called "Deepfake" videos became even more difficult to distinguish from original videos. As fake news or Deepfake blackmailing are causing confusion and serious problems, this paper suggests a novel model detecting Deepfake videos. We chose Residual Convolutional Neural Network (Resnet50) as an extraction model and Long Short-Term Memory (LSTM) which is a form of Recurrent Neural Network (RNN) as a classification model. We adopted cosine similarity with hinge loss to train our extraction model in embedding the features of Deepfake and original video. The result in this paper demonstrates that temporal features in the videos are essential for detecting Deepfake videos.

  • PDF

Automatic Recognition of Pitch Accents Using Time-Delay Recurrent Neural Network (시간지연 회귀 신경회로망을 이용한 피치 악센트 인식)

  • Kim, Sung-Suk;Kim, Chul;Lee, Wan-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4E
    • /
    • pp.112-119
    • /
    • 2004
  • This paper presents a method for the automatic recognition of pitch accents with no prior knowledge about the phonetic content of the signal (no knowledge of word or phoneme boundaries or of phoneme labels). The recognition algorithm used in this paper is a time-delay recurrent neural network (TDRNN). A TDRNN is a neural network classier with two different representations of dynamic context: delayed input nodes allow the representation of an explicit trajectory F0(t), while recurrent nodes provide long-term context information that can be used to normalize the input F0 trajectory. Performance of the TDRNN is compared to the performance of a MLP (multi-layer perceptron) and an HMM (Hidden Markov Model) on the same task. The TDRNN shows the correct recognition of $91.9{\%}\;of\;pitch\;events\;and\;91.0{\%}$ of pitch non-events, for an average accuracy of $91.5{\%}$ over both pitch events and non-events. The MLP with contextual input exhibits $85.8{\%},\;85.5{\%},\;and\;85.6{\%}$ recognition accuracy respectively, while the HMM shows the correct recognition of $36.8{\%}\;of\;pitch\;events\;and\;87.3{\%}$ of pitch non-events, for an average accuracy of $62.2{\%}$ over both pitch events and non-events. These results suggest that the TDRNN architecture is useful for the automatic recognition of pitch accents.

Detection of epileptiform activities in the EEG using wavelet and neural network (웨이브렛과 신경 회로망을 이용한 EEG의 간질 파형 검출)

  • 박현석;이두수;김선일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.70-78
    • /
    • 1998
  • Spike detection in long-term EEG monitoring forepilepsy by wavelet transform(WT), artificial neural network(ANN) and the expert system is presented. First, a small set of wavelet coefficients is used to represent the characteristics of a singlechannel epileptic spikes and normal activities. In this stage, two parameters are also extracted from the relation between EEG activities before the spike event and EEG activities with the spike. then, three-layer feed-forward network employing the error back propagation algorithm is trained and tested using parameters obtained from the first stage. Spikes are identified in individual EEG channels by 16 identical neural networks. Finally, 16-channel expert system based on the context information of adjacent channels is introducedto yield more reliable results and reject artifacts. In this study, epileptic spikes and normal activities are selected from 32 patient's EEG in consensus among experts. The result showed that the WT reduced data input size and the preprocessed ANN had more accuracy than that of ANN with the same input size of raw data. Ina clinical test, our expert rule system was capable of rejecting artifacts commonly found in EEG recodings.

  • PDF

Research on Forecasting Framework for System Marginal Price based on Deep Recurrent Neural Networks and Statistical Analysis Models

  • Kim, Taehyun;Lee, Yoonjae;Hwangbo, Soonho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.138-146
    • /
    • 2022
  • Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.

Evaluating the groundwater prediction using LSTM model (LSTM 모형을 이용한 지하수위 예측 평가)

  • Park, Changhui;Chung, Il-Moon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.273-283
    • /
    • 2020
  • Quantitative forecasting of groundwater levels for the assessment of groundwater variation and vulnerability is very important. To achieve this purpose, various time series analysis and machine learning techniques have been used. In this study, we developed a prediction model based on LSTM (Long short term memory), one of the artificial neural network (ANN) algorithms, for predicting the daily groundwater level of 11 groundwater wells in Hankyung-myeon, Jeju Island. In general, the groundwater level in Jeju Island is highly autocorrelated with tides and reflected the effects of precipitation. In order to construct an input and output variables based on the characteristics of addressing data, the precipitation data of the corresponding period was added to the groundwater level data. The LSTM neural network was trained using the initial 365-day data showing the four seasons and the remaining data were used for verification to evaluate the fitness of the predictive model. The model was developed using Keras, a Python-based deep learning framework, and the NVIDIA CUDA architecture was implemented to enhance the learning speed. As a result of learning and verifying the groundwater level variation using the LSTM neural network, the coefficient of determination (R2) was 0.98 on average, indicating that the predictive model developed was very accurate.

Combining 2D CNN and Bidirectional LSTM to Consider Spatio-Temporal Features in Crop Classification (작물 분류에서 시공간 특징을 고려하기 위한 2D CNN과 양방향 LSTM의 결합)

  • Kwak, Geun-Ho;Park, Min-Gyu;Park, Chan-Won;Lee, Kyung-Do;Na, Sang-Il;Ahn, Ho-Yong;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.681-692
    • /
    • 2019
  • In this paper, a hybrid deep learning model, called 2D convolution with bidirectional long short-term memory (2DCBLSTM), is presented that can effectively combine both spatial and temporal features for crop classification. In the proposed model, 2D convolution operators are first applied to extract spatial features of crops and the extracted spatial features are then used as inputs for a bidirectional LSTM model that can effectively process temporal features. To evaluate the classification performance of the proposed model, a case study of crop classification was carried out using multi-temporal unmanned aerial vehicle images acquired in Anbandegi, Korea. For comparison purposes, we applied conventional deep learning models including two-dimensional convolutional neural network (CNN) using spatial features, LSTM using temporal features, and three-dimensional CNN using spatio-temporal features. Through the impact analysis of hyper-parameters on the classification performance, the use of both spatial and temporal features greatly reduced misclassification patterns of crops and the proposed hybrid model showed the best classification accuracy, compared to the conventional deep learning models that considered either spatial features or temporal features. Therefore, it is expected that the proposed model can be effectively applied to crop classification owing to its ability to consider spatio-temporal features of crops.

Water level prediction in Taehwa River basin using deep learning model based on DNN and LSTM (DNN 및 LSTM 기반 딥러닝 모형을 활용한 태화강 유역의 수위 예측)

  • Lee, Myungjin;Kim, Jongsung;Yoo, Younghoon;Kim, Hung Soo;Kim, Sam Eun;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1061-1069
    • /
    • 2021
  • Recently, the magnitude and frequency of extreme heavy rains and localized heavy rains have increased due to abnormal climate, which caused increased flood damage in river basin. As a result, the nonlinearity of the hydrological system of rivers or basins is increasing, and there is a limitation in that the lead time is insufficient to predict the water level using the existing physical-based hydrological model. This study predicted the water level at Ulsan (Taehwagyo) with a lead time of 0, 1, 2, 3, 6, 12 hours by applying deep learning techniques based on Deep Neural Network (DNN) and Long Short-Term Memory (LSTM) and evaluated the prediction accuracy. As a result, DNN model using the sliding window concept showed the highest accuracy with a correlation coefficient of 0.97 and RMSE of 0.82 m. If deep learning-based water level prediction using a DNN model is performed in the future, high prediction accuracy and sufficient lead time can be secured than water level prediction using existing physical-based hydrological models.

A Study on Stock Trading Method based on Volatility Breakout Strategy using a Deep Neural Network (심층 신경망을 이용한 변동성 돌파 전략 기반 주식 매매 방법에 관한 연구)

  • Yi, Eunu;Lee, Won-Boo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.81-93
    • /
    • 2022
  • The stock investing is one of the most popular investment techniques. However, since it is not easy to obtain a return through actual investment, various strategies have been devised and tried in the past to obtain an effective and stable return. Among them, the volatility breakout strategy identifies a strong uptrend that exceeds a certain level on a daily basis as a breakout signal, follows the uptrend, and quickly earns daily returns. It is one of the popular investment strategies that are widely used to realize profits. However, it is difficult to predict stock prices by understanding the price trend pattern of stocks. In this paper, we propose a method of buying and selling stocks by predicting the return in trading based on the volatility breakout strategy using a bi-directional long short-term memory deep neural network that can realize a return in a short period of time. As a result of the experiment assuming actual trading on the test data with the learned model, it can be seen that the results outperform both the return and stability compared to the existing closing price prediction model using the long-short-term memory deep neural network model.

Forecasting River Water Levels in the Bac Hung Hai Irrigation System of Vietnam Using an Artificial Neural Network Model

  • Hung Viet Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.37-37
    • /
    • 2023
  • There is currently a high-accuracy modern forecasting method that uses machine learning algorithms or artificial neural network models to forecast river water levels or flowrate. As a result, this study aims to develop a mathematical model based on artificial neural networks to effectively forecast river water levels upstream of Tranh Culvert in North Vietnam's Bac Hung Hai irrigation system. The mathematical model was thoroughly studied and evaluated by using hydrological data from six gauge stations over a period of twenty-two years between 2000 and 2022. Furthermore, the results of the developed model were also compared to those of the long-short-term memory neural networks model. This study performs four predictions, with a forecast time ranging from 6 to 24 hours and a time step of 6 hours. To validate and test the model's performance, the Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error, and root mean squared error were calculated. During the testing phase, the NSE of the model varies from 0.981 to 0.879, corresponding to forecast cases from one to four time steps ahead. The forecast results from the model are very reasonable, indicating that the model performed excellently. Therefore, the proposed model can be used to forecast water levels in North Vietnam's irrigation system or rivers impacted by tides.

  • PDF