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Abstract

This paper presents a method for the automatic recognition of pitch accents with no prior knowledge about the 
phonetic content of the signal (no knowledge of word or phoneme boundaries or of phoneme labels). The recognition 
algorithm used in this paper is a time-delay recurrent neural network (TDRNN). A TDRNN is a neural network 
classier with two different representations of dynamic context: delayed input nodes allow the representation of an 
explicit trajectory FO(t), while recurrent nodes provide long-term context information that can be used to normalize the 
input F0 trajectory. Performance of the TDRNN is compared to the performance of a MLP (multi-layer perceptron) and 
an HMM (Hidden Markov Model) on the same task. The TDRNN 아lows the correct recognition of 91.9% of pitch 
events and 91.0% of pitch non-events, for an average accuracy of 91.5% over both pitch events and non-events. The 
MLP with contextual input exhibits 85.8%, 85.5%, and 85.6% recognition accuracy respectively, while the HMM 
shows the correct recognition of 36.8% of pitch events and 87.3% of pitch non-events, for an average accuracy of 
62.2% over both pitch events and non-events. These results suggest that the TDRNN architecture is useful for the 
automatic recognition of pitch accents.
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I. Introduction

Words that a talker considers semantically or 

pragmatically important are often produced with a funda­

mental frequency contour called a pitch accent. A pitch 

accent is an unusually high F0 (possibly a local maximum) 

or an unusually low F0 (possibly a local minimum) 

designed to draw attention to the important wordtl]. The 

presence of a pitch accent correlates with other changes 

in the aco나Stic signal, including increased duration of 

vowels and increased burst amplitude and voice onset 

time (VOT) of stop consonants. Cole et al.[2] found 

evidence that accentual strengthening of stop consonants
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shifts the boundary between voiced and unvoiced cognates 

of any given stop release： for example, the VOT and 

burst amplitude of an unaccented /p/ release are comparable 

to the VOT and burst amplitude of an accented /b/ 

release. Knowledge of pitch accent placement would 

therefore be useful prior information for automatic speech 

recognition.

This paper proposes a method for the automatic 

recognition of pitch accents with no prior knowledge about 

the phonetic content of the signal (no knowledge of word or 

phoneme boundaries or of phoneme labels). In the 

framework presented here, the problem of pitch accent 

recognition is considered to be a special case of the general 

problem of context-dependent, non-parametric dynamic 

contour recognition. The recognition problem is non-parametric 

because the distribution of F0 is unknown； in partic나lar, 
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there is no evidence that the distribution of FO is Gaussian. 

The recognition problem is context-dependent because FO 

encodes much more than just prosody： in particular, talker 

dependence, dependence on speaking style, and short-time 

acoustic phonetic information encoded in the FO trajectory 

must be ignored. The recognition algorithm used in this 

paper is a time-delay recurrent neural network (TDRNN) 

[3]. A TDRNN is a neural network classier with two 

different representations of dynamic context： delayed input 

nodes allow the representation of an explicit trajectory FO(t), 

while recursive nodes provide long-term context information 

that can be used to normalize the input FO trajectory. 

Section n of this paper describes a selection of papers in 

the field of prosody dependent speech recognition, and 

briefly discusses the importance of the problem. Section HI 

describes the TDRNN architecture for pitch accent 

recognition used in these experiments. Section IV describes 

the experimental methods used for the recognition of pitch 

accents. Section V gives the experimental results, and 

Section VI presents conclusions.

II. Background

Prosodic labels are potentially useful in automatic speech 

understanding systems for at least four reasons. First, 

prosody correlates with syntax： Price et al.[4] showed that 

prosody may be used to disambiguate syntactically distinct 

sentences with identical phoneme strings, while Kim et 

al.[5] have demonstrated that prosody may be used to infer 

punctuation of a recognized text. Second, prosody correlates 

with meaning： for example, Taylor et al,[6] have used 

prosody for the purpose of recognizing the dialog act labels 

of utterances. Third, prosody is useful for the detection and 

subsequent processing of speech disfluencies[7]. Finally, 

prosody may be useful as prior conditioning information for 

the correct phoneme labeling of an ambiguous acoustic 

signal. The acoustic implementation of a phoneme depends 

on its prosodic context in many ways： accented vowels tend 

to be longer and less subject to coarticulatory variation[8], 

while accented consonants are produced with greater closure 

duration[9], greater linguopalatal contact[10], longer voice 

onset time, and gteater burst amplitude[2].

In an automatic speech recognition system, prosody may 

be recognized before, after, or simultaneous with the 

recognition of phonemes and words. The ordering of the 

word-recognition module and the prosody-recognition 

module depends on the intended purpose of prosody 

recognition. Systems that intend to use prosody only for the 

purpose of semantic, syntactic, or disfluency processing 

often implement a prosodic post-processing strategy, in 

which the input to the prosody recognizer includes a 

time-aligned word graph generated by an initial 

prosody - independent speech recognizer. The advantage of a 

post-processor strategy is greater accuracy, won by the use 

of syllable-timed acoustic features (e.g., average FO during 

the syllable of interest [11]) and word string information 

[12], These advantages are compelling in many 

applications：all reported uses of prosody in commercial 

speech under- standing systems use a post-processor model 

of prosody recognition. The disadvantage of a 

post-processor strategy is that the front-end recognizer is 

unable to use prosody to aid in the phonetic labeling of 

ambiguous acoustic signals. Kompe[ll] demonstrates both 

theoretically and empirically that a prosody post-processor 

can improve the search time of a speech recognizer, but 

never its word recognition accuracy.

Taylor[13] has demonstrated one of the few systems able 

to recognize pitch accents without prior information about 

word boundary location. His two-stage prosody recognition 

system first locates pitch events using a hidden Markov 

model, then labels the pitch events using an 

analysis-by-synthesis matching strategy. "Pitch events" 

include high, major pitch accents and rising phrase 

boundaries. Non-events include minor accents, level accents, 

and falling boundaries, as well as regions with no 

perceptible prosodic contour. The best reported pitch event 

recognition system comprises three-state mixture - Gaussian 

hidden Markov models of each distinct pitch event label, 

meaning that every accent type, every boundary type, and 

every possible combination of an accent and a boundary are 

distinctly modeled. The HMM observes talker-normalized 

FO and delta-FO. For the purposes of scoring recognizer 

output, all pitch event models (accent and rising boundary 

models) output the label "e" (event), and all non-event 

models (including level accent, minor accent, falling 

boundary, and continuation segment) output the label "c." 

Event recognition is considered correct only if the overlap 

between a transcribed pitch event and a true pitch event is 
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at least 50% of the duration of the true pitch event. Under 

these constraints, speaker-independent pitch event 

recognition correctness is 72.7%, with a recognition 

accuracy of 47.7% (25% insertion rate). Speaker-dependent 

pitch event recognition correctness is 82.1%, with an 

accuracy of 63.1%.

The symbols of intonational phonology are the subject of 

current debate, and a variety of annotation systems have 

been used to transcribe publicly distributed databases. The 

Boston Radio News corpus [14] is transcribed using the 

Tones and Break Indices (ToBI) annotation standard 

[1,15,16]. ToBI posits three fundamental pitch movements： 

high (H), low (L), and downstepped (!H). A pitch accent is 

composed of one or two pitch movements in a row； an 

intermediate phrase boundary tone is a single pitch 

movement, and an intonational phrase boundary tone is a 

sequence of two movements. About 95% of pitch accents in 

the Radio News corpus are centered on a high pitch 

movement (H* and L+H* accents) or a downstepped pitch 

movement (!H* L+!H* or H+!H*), Dainora[17] argues that 

!H and H movements are not linguistically distinct and 

should therefore not be distinctly recognized. The Radio 

News corpus documentation further notes that the distinction 

between L+H* and H* is the least reliably transcribed.

Taylor and his colleagues have annotated the DCIEM 

maptask[18] using an annotation scheme with three types of 

accent (high, level, and minor, marked as h, 1, and m), two 

types of boundary (rising and falling, marked as rb and fb), 

and a flat connecting contour (c). Despite the detailed 

notation, Taylor argues that low pitch events represent a 

default setting of the speech production mechanism rather 

than a consciously produced pitch accent； his recognition 

results are reported for the task of distinguishing pitch

Iigjut Layer Pitch Context Layer

Figure 1. The architecture of TDRNN (z-1 denotes 1 time frame delay).

"events" (a and rb) from nonevents (1, m, fb, and c). In 

ToBI notation, Taylor's pitch events correspond approximately 

to high pitch accents (H*) and rising boundary tones (H-, 

L-H%, and H-H%) while low accents (L*) and falling 

boundary tones (L-, H-L%, and L-L%) roughly correspond 

to pitch non-events.

III. TDRNN Architecture

In this section, we describe a neural network architecture 

called time-delay recurrent neural network (TDRNN) for 

automatic recognition of pitch movements. The architecture 

of the TDRNN is shown in Fig. 1[3]. The TDRNN is a 3 

layer back-propagation network with an additional pitch 

context layer. The TDRNN provides two different 

representations of dynamic context. First, time-delayed input 

units (as in a TDNN[19]) allow the representation of 

short-term context of an explicit trajectory F0(t). Second, 

multiple recurrent circuits through time-delayed pitch 

context layer units encode long-term context information 

that can be used to normalize the input F0 trajectory. The 

activation of the pitch layer unit at time t is copied into 

that of the pitch context layer unit which is used for 

long-term context modelling of pitch movements and acts as 

an additional input at time t+ 1.

The Delay Box of n interconnections shown in Fig. 1, 

each with its own time-delay, from the input unit to the 

hidden unit and between the pitch context unit and the 

hidden unit can be depicted as Fig. 2. Node i of layer 

J? — 1 is connected to node j of the next upper layer h, 

with the connection line having an independent time-delay 

r ijkth~v^ weight w Each node sums up the net 

inputs from the activation values of the previous layer

Figure 2. Delay box("谯卜】denotes 及h time frame delay to node j 

from node i).
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nodes, through the corresponding time-delay on each 

connection line, i.e., at time t w node j of layer h receives 

a weighted sum:

힌员1•知"i( 侖一‘以,"i)) (°

where x r ak,h~\) is the activation level of

layer of node i on the layer h— 1 at time tn — r ijkfh~v 

Ndenotes the set of nodes of layer h—1, K儿―、 
represents the number of connections (i.e., number of 

time-delays) to node j of layer h from node i of layer 

h~ 1, and 犬.)is a non-decreasing sigmoidal function. 

The interconnection weights 3 mr are learned using the 

error back-propagation learning algorithm[20], and the 

time-delays r are fixed. Since the activation of the 

pitch context layer unit is a direct copy of the previous 
pitch layer actuation, the feedback connection through the 
copy operation is not subject to training.

IV. Experimental Methods

The TDRNN was trained and tested for the purpose of 
talker-independent, gender-dependent pitch event recognition 
using data extracted from the Boston Radio News Corpus 
[14], Performance of the TDRNN was compared to the 
performance of a TDNN/MLP (time-delay neural network/ 
multi-layer perceptron) and an HMM-based recognizer 
trained and tested on the same task.

The Boston Radio News Corpus is a series of radio 
stories read by sev아】 professional radio announcers, and 
partially annotated using the ToBI (tones and break indices) 
prosodic annotation system[15, 16]. Seven types of pitch 
accents are transcribed in the Radio News Corpus. All 
seven types of accents involve classification of pitch 
movement on the accented sylla이e into one of three 
categories: high (H*), downstepped and Iow(L*). The 
notation "*?" is used to mark a questionable pitch accent. 
Some transcriptions mark the location of a pitch accent (as 
"*") but not its type; most of these are high or downstepped 
accents. The TDRNN, MLP, and HMM recognizers in our 

experiments are trained to recognize as pitch events all 
syllables marked with H*5 !H七 *, ?*, or L*, and as 
non-events all unaccented syllables. For training purposes, 
each pitch event or non-event starts at the beginning of the 
first sonorant phoneme in a syllable, and ends at the end of 
the last sonorant phoneme in the same syllable. For testing 
purposes, all three recognizers were used to label every 
frame in the test database as either accented or unaccented. 
During recognition tests, a pitch event was considered 
correctly recognized if at least 50% of its frames were 
labeled "accented" The TDRNN, MLP, and HMM are 
trained using 67 paragraphs comprising 2,078 pitch events 
and 2,116 non-events from one female speaker (FlA), and 
tested with 164 paragraphs comprising 6,999 pitch events 
and 7,082 non-events from another female speaker (F2B).

Both TDRNN and MLP networks observe a 
two-dimensional input vector containing normalized 

fundamental frequency (百二(分)and energy (瓦(分).The 

fundamental frequency is extracted using the

formant program in Entropic XWAVES with probability of 
voicing (PV) output as a confidence measure fbr the 

extracted Fo(/). We eliminated pitch doubling and halving 

errors by eliminating F 0 that falls into the doubling and 

halving clusters of a 3 mixture Gaussian model whose 

mixture component means are restricted to 1/2“，阳 and 

2a where [丄 is the estimated utterance mean We then 

normalize Fo by p. and convert it to log sc히e:

戸" = max(0.2, log(，구炉 +])). ⑵

To eliminate imrelia비e 有) measures, those with PVs 

smaller than a heuristic threshold are replaced by the linear 

interpolated values 瓦 based on the that have PVs 

greater than the threshold. Similarly, energy is normalized 
using:

瓦(£)= max(-3, log(■으*)), (3)

where 〃 is the utterance maximum energy.
The TDRNN is configured with 2 input units, 10 hidden 
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units, 1 pitch layer unit (1 pitch context layer unit), and 2 
output units. The input units have 14 time frame delays for 
input context modeling, while the recursive pitch context 
layer unit has 18 time frame delays fbr the long-term 
context modeling _^of pitch movements. The MLP is 
configured with 2 input units, 20 hidden units, and 2 output 
units. The input units have 16 time frame delays to provide 
context to the network, and 17 frames are used as input. 
The HMM-based recognizer uses five three-state HMMs, 
modeling the five labels H*, !H*, ?*, L*, and unaccented 
(there were no * labels in the training data). Of several 
tested HMM configurations, best performance was achieved 
using a ten-component diagonal-covariance mixture 
Gaussian PDF with a six-dimensional feature vector 

comprising K(分，苏(〃，and their deltas and 

delta-deltas. The HMMs have 393 trainable parameters each, 
for a total of 2358 trainable parameters. The MLP has 742 
traina비e parameters (720 weights + 22 biases), and the 
TDRNN has 505 trainable parameters (492 weights + 13 
biases); thus the neural network amhitectures use 20% to 
30% as many parameters as the HMM.

The TDRNN is trained, using error back-propagation, to 
imitate a target function. The target function for the 
TDRNN is equal to 1 during pitch events, and 0 otherwise 
(thus the TDRNN target function is equal to 0 during pitch 
non-events, and also during non-sonorant frames). The two 
output units of the MLP are trained, using error 
back-propagation, to imitate complementary target functions: 
one is equal to the target function of the TDRNN, while the 
other is equal to one minus the TDRNN target. The HMMs 
are trained using a standard Baum-Welch maximum likelihood 
training algorithm.

In recognition tests, both the TDRNN and the MLP were 
used to label every frame in the test database as either pitch 
event or non-event. A pitch event was considered correctly 
recognized if the recognized pitch event and the true pitch 
event overlapped in time by at least 50%, as proposed by 
Taylor[13].

V. Experimental Results

We have performed the testing which is speaker 
independent, by running the trained TDRNN, MLP, and 5

Figure 3. The solid line is for true pitch event, the b이d s애d line is for 
the output values of the output layer unit of TDRNN, and the 
dashed line is for the output values of the pitch layer unit 
which estimates pitch non-events.

mixture HMM over test data. The TDRNN has two output 
units; one represents pitch accent event marked with high 
accents (H*s !H*, *), and the other represents pitch event 
marked with low accents (L*, ?*), but the TDRNN creates \ 
important information about pitch non-event which can be 
derived from the pitch layer unit. Fig. 3 shows three 
functions of time, computed for a sentence in the test 
database: the TDRNN target function, the TDRNN output 
unit, and the TDRNN pitch layer unit. As 아the 
TDRNN output unit tracks the target function reasonably 
well. The figure also demonstrates the way in which the 
pitch layer unit encodes information about the long-term 
context of the input pitch contours. Specifically, the 
activation of the pitch layer unit approximates, reasonably 
well, the complement of the target function: the probability 
of a pitch non-event. ,

Recognition experiments were performed using test data 
extracted from the Radio News Corpus. The MLP marked 
each frame as a pitch event if and only if the activation of 
the pitch-event output node was higher than that of the 
non-event node. The TDRNN marked each frame as a pitch 
event if and only if the activation of the output unit was 
higher than that of the pitch layer unit. Pitch event 
recognition accuracy is computed as the number of correctly 
recognized events divided by the number of events in the 
database; in order to be correct, the recognized time period 
of an event must overlap with the true time period of the 
same event by at least 50%. Non-event recognition accuracy 
is scored the same way.

Table 1 summarizes pitch event andjion-event 冀co흥nition 
results on the test data. The TDRNN shows the correct 
recognition of 91.9% of pitch events and 91.0% of pitch 
non-events, for an average accuracy of 91.5% over both
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Table 1, The results of pitch event recognition with TDRNN, MLP, and 

HMM.

Architecture Pitch accent 
events (%)

Pitch 
non-events 

(%)

Pitch accent events 
+

Pitch non-events
(%)

TDRNN 91.9 91.0 91.5
MLP 85.8 85.5 85.6
HMM 36.8 87.3 62.2

Table 2. The individual res니Its of pitch event recognition by the TDRNN: 
the columns show how many tokens were recognized as 
event, and how many were recognized as non-event.

Pitch accent Recognized as event 
Percentag 이%)(Number)

Recognized as non-event 
Percentag 이%)(Number)

H* 93.0 (4331) 7.0 (325)
!H* 91.5 (1392) 8.5 (130)

* 94.7 (126) 5.3 (7)
?* 88.7 (337) 11.3 (43)
L* 78.9 (243) 21.1 (65)

Unaccented 9.0 (634) 91.0 (6448)

Table 3. The individual results of pitch event recognition by the MLP: 
the columns show how many tokens were recognized as 
event, and how many were recognized as non-event.

Pitch accent Recognized as event 
Percentag 이%)(Number)

Recognized as 
non-event 

Percentage(%)(Number)

H* 87.8 (4088) 12.2 (568)
!H* 87.3 (1329) 12.7 (193)

* 94.0 (125) 6.0 (8)
?* 75.8 (288) 24.2 (92)
L* 57.5 (177) 42.5 (131)

Unaccented 145 (1030) 85.5 (6052)

Table 4. The individual results of pitch event recognition by the 5 
mixture HMM: the columns show how many tokens were 
recognized as event, and how many were recognized as 
non-event.

Pitch 
accent

Recognized as event 
P 으 rcentag 어%)(Numb 이")

Recognized as non-event 
Percentage(% )(Number)

H* 37.2 (1733) 62.8 (2923)
!H* 36.9 (562) 63.1 (960)

* 444 (59) 55.6 (74)
?* 36.8 (140) 63.2 (240)
L* 26.9 (83) 73.1 (225)

Unaccented 12.7 (897) 87.3 (6185)

pitch events and non-events. The MLP with contextual input 

exhibits 85.8%, 85.56%, and 85.6% recognition accuracy 

respectively, while the 5 mixture HMM shows the correct 

recognition of 36.8% of pitch events and 87.3% of pitch 

non-events, for an average accuracy of 62.2% over both 

pitch events and non-events. Table 2, Table 3, and Table 4 

show how many tokens were recognized as "event," and 

how many were recognized as "non-event". These results 

show that the TDRNN encodes dynamic variations of pitch 

movements better than the others (MLP and HMM) do. The 

5 mixture HMM, in particular, almost doesn't recognize 

pitch accents, while well recognizes pitch non-events.

VI. Conclusions

The results reported in this paper may be meaningfully 

compared to three sets of prior published results. First, 

human transcribers agree on the location of pitch accents in 

the Boston University Radio News corpus with an 

agreement rate of roughly 91%[14]. Second, Taylor[13] has 

published the only experimental results for the task of pitch 

event recognition without given word boundary locations. 

His mixture-Gaussian HMM-based intonation recognition 

system achieved 82.1% recognition correctness and 63.1% 

recognition accuracy on a speaker- dependent subset of the 

DCIEM map-task corpus (72.7% correctness and 47.7% 

accuracy on a speaker-independent subset). Third, Ostendorf 

and Ross[21] have trained and tested a speaker-dependent 

mixture Gaussian stochastic segment model with word and 

phoneme boundaries specified by an HMM pre-processor. 

Their model was both trained and tested using talker F2B 

from the Radio News Corpus, the same talker that were 

used to test the MLP and TDRNN models in our 

experiments. Their model recognizes pitch accent location 

with an accuracy of 89%. If the results are collapsed into 

our categories of pitch event and non-event, the resulting 

accuracies are 78.2% correct recognition of events, and 

94.9% correct recognition of non-events.

The recognition accuracy of the talker-independent 

TDRNN architecture in this paper is almost identical to the 

rate of agreement among human transcribers (91.5% versus 

91%). The TDRNN performs significantly better than accent 

recognizers based on HMM or stochastic segment models 

containing mixture Gaussian probability densities； the 

TDRNN also performs significantly better than a 

non-recursive MLP architecture.

The relatively good performance of the TDRNN on this 
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task may be attributed to discriminatively trained non­

parametric representation of the long term context- 

dependent categories of pitch event and pitch non-event. 

First, the TDRNN represents the discrimination between 

pitch event and non-event classes using a discriminative 

non-parametric neural network classifier, instead of using a 

mixture Gaussian model trained using the maximum 

likelihood method. Performance of a parametric classifier 

depends on the details of the probability model in the 

critical region near the classification threshold； the 

probability distribution of F0(t) in this critical region may 

not be well approximated by a mixture Gaussian model. 

The 5 mixture HMM, in this paper, shows only 62.2% 

correct recognition accuracy. Second, the TDRNN represents 

both long-term and short-term context； without long-term 

context, the MLP arch辻ecture achieves 85.6% correct 

recognition accuracy. These results suggest that the 

long-term context modeling through multiple recurrent 

circuits is useful for the correct recognition of pitch events. 

We will seek to apply the TDRNN for automatic labeling 

of pitch accents to a prosody dependent speech recognizer 

that models word and prosody in a unified probabilistic 

framework.
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