• Title/Summary/Keyword: long span structure

Search Result 250, Processing Time 0.023 seconds

A Study on the Static Behavior of PSC Bridge Decks (PSC 바닥판의 정적거동특성에 관한 연구)

  • 주봉철;김영진;이정우;김병석;박성용;이필구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.519-524
    • /
    • 2002
  • The long span PSC deck of composite girder bridge should be needed in order to improve the endurance and to simplify the structure of the steel bridge. However, there have been few domestic research activities about long-span PSC decks for the steel bridges with a small number of girders. In this study, a literature survey is performed to develop a new deck system for the steel bridge with a small number of girders. By considering the characteristics of a small number of girders bridge system, a cast-in-place long span PSC deck is proposed for a small number of girders bridges. To examine structural behavior and safety of the proposed PSC deck, the real scale partial models of the deck(12m$\times$3.2m) are tested under the static loading. In the test, the failure mode and behavior of each specimen, and ultimate load carrying capacity of the proposed PSC deck are identified.

  • PDF

Ultimate strength of long-span buildings with P.E.B (Pre-Engineered Building) system

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1483-1499
    • /
    • 2015
  • With the improvement of the quality of construction materials and the development of construction technologies, large-scale long-span steel frame buildings have been built recently. The P.E.B system using tapered members is being employed as an economically-efficient long-span structure owing to its advantage of being able to distribute stress appropriately depending on the size of sectional areas of members. However, in December 2005 and in February 2014, P.E.B buildings collapsed due to sudden loads such as snow loads and wind gusts. In this study, the design and construction of the P.E.B system in Korea were analyzed and its structural safety was evaluated using the finite element analysis program to suggest how to improve the P.E.B system in order to promote the efficient and rational application of the system.

Case Study of Coordinate Measurement during Construction of Long-Span Irregular Curved Roof Layers (장경간 비정형 곡면 지붕층의 시공중 좌표 계측 사례 연구)

  • Shim, Hak-Bo;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.14-15
    • /
    • 2019
  • In this paper, it was tried to prove the possibility and effect of coordinate measurement by using MEP layout equipment at the construction stage, and to propose a method to improve measurement accuracy during construction. For this study, the passenger terminal site, which is a long span structure, was selected and compared with three dimensional CAD drawings and construction measurement results using MEP layout equipment for the precise construction of long-span irregular curved roof layers. As a result, it was found that it is possible to construct three-dimensional curved roof layers using MEP layout equipment through measurement and analysis.

  • PDF

Mechanical features of cable-supported ribbed beam composite slab structure

  • Qiao, W.T.;Wang, D.;Zhao, M.S.
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.523-534
    • /
    • 2017
  • Cable-supported ribbed beam composite slab structure (CBS) is proposed in this study. As a new cable-supported structure, it has many merits such as long span availability and cost-saving. Inspired by the previous research on cable-supported structures, the fabrication and construction process are developed. Pre-stress design method based on static equilibrium analysis is presented. In the algorithm, the iteration convergence can be accelerated and the calculation result can be kept in an acceptable precision by setting a rational threshold value. The accuracy of this method is also verified by experimental study on a 1:5 scaled model. Further, important parameters affecting the mechanical features of the CBS are discussed. The results indicate that the increases of sag-span ratio, depth of the ribbed beam and cable diameter can improve the mechanical behavior of the CBS by some extent, but the influence of strut sections on mechanical behavior of the CBS is negligible.

Optimization of long span portal frames using spatially distributed surrogates

  • Zhang, Zhifang;Pan, Jingwen;Fu, Jiyang;Singh, Hemant Kumar;Pi, Yong-Lin;Wu, Jiurong;Rao, Rui
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.227-237
    • /
    • 2017
  • This paper presents optimization of a long-span portal steel frame under dynamic wind loads using a surrogate-assisted evolutionary algorithm. Long-span portal steel frames are often used in low-rise industrial and commercial buildings. The structure needs be able to resist the wind loads, and at the same time it should be as light as possible in order to be cost-effective. In this work, numerical model of a portal steel frame is constructed using structural analysis program (SAP2000), with the web-heights at five locations of I-sections of the columns and rafters as the decision variables. In order to evaluate the performance of a given design under dynamic wind loading, the equivalent static wind load (ESWL) is obtained from a database of wind pressures measured in wind tunnel tests. A modified formulation of the problem compared to the one available in the literature is also presented, considering additional design constraints for practicality. Evolutionary algorithms (EA) are often used to solve such non-linear, black-box problems, but when each design evaluation is computationally expensive (e.g., in this case a SAP2000 simulation), the time taken for optimization using EAs becomes untenable. To overcome this challenge, we employ a surrogate-assisted evolutionary algorithm (SAEA) to expedite the convergence towards the optimum design. The presented SAEA uses multiple spatially distributed surrogate models to approximate the simulations more accurately in lieu of commonly used single global surrogate models. Through rigorous numerical experiments, improvements in results and time savings obtained using SAEA over EA are demonstrated.

A comparative study on different walking load models

  • Wang, Jinping;Chen, Jun
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.847-856
    • /
    • 2017
  • Excessive vibrations can occur in long-span structures such as floors or footbridges due to occupant?s daily activity like walking and cause a so-called vibration serviceability issue. Since 1970s, researchers have proposed many human walking load models, and some of them have even been adopted by major design guidelines. Despite their wide applications in structural vibration serviceability problems, differences between these models in predicting structural responses are not clear. This paper collects 19 popular walking load models and compares their effects on structure?s responses when subjected to the human walking loads. Model parameters are first compared among all these models including orders of components, dynamic load factors, phase angles and function forms. The responses of a single-degree-of-freedom system with various natural frequencies to the 19 load models are then calculated and compared in terms of peak values and root mean square values. Case studies on simulated structures and an existing long-span floor are further presented. Comparisons between predicted responses, guideline requirements and field measurements are conducted. All the results demonstrate that the differences among all the models are significant, indicating that in a practical design, choosing a proper walking load model is crucial for the structure?s vibration serviceability assessment.

A study on interaction of track displacement and structure on long span Cheongdam Bridge (장경간 청담대교에서 궤도의 변위와 구조불간의 상호작용에 관한 연구)

  • Kim, Soon-Cheol;Park, Seok-Soon;Lee, Jong-Deuk;Kang, Jeong-Ok;Han, Kwang-Seob
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.117-122
    • /
    • 2003
  • Cheongdam Bridge in Seoul Metropolitan Subway Line No.7 recently constructed has 180 meters (2@90m) of expansion length of structure (distance between fixed points). Track type is all ballasted track and rail expansion joint is installed at every movable point. However, there is no expansion joint at the transition area between ballasted track ,end deck. By this reason, the rail buckling has been occurred every year and there is actually an abnormal behavior in expansion. In this study, based on the modeling of the Cheongdam Bridge, the element of interacting relationship between track and structure which is influential to track displacement in long-span bridge was analyzed and, finally, the methodology to ensure the continuous-welded rail in Cheongdam Bridge was suggested.

  • PDF

An Analytic Study on the Image of the long-span Structural Types (대형공간 구조형식별 이미지 분석에 관한 연구)

  • 양재혁
    • Archives of design research
    • /
    • v.15 no.4
    • /
    • pp.263-274
    • /
    • 2002
  • This study aims to analyze the image of long-span structures. For the intention, it analyzes the relationship between images and physical attributions of elements such as materials, stresses, configurations, compositions and shapes of structures. The image of structures can represent following 5 factors; friendly-unfriendly, strong-weak, dynamic-calm, superior-inferior, and regular-irregular. The friendly-unfriendly in the image of structure mostly determines on a finished material and partly with a structural shape. The strong-weak in the image of structure determines on configuration of the structural members. The dynamic-calm in the image of structure determines on the structural shape. Hence the structure has dynamic forms when it seems to be open and sharp, namely when it receives the flow of forces in the structural shape, and it has a (-) gauss curved rate or an diagonal appearance. The superior-inferior in the image of structure determines on composition of structural elements. The structure seems to be superior is contributed not simply to support load but positively to create design as a tectonic element. From now on, this study can provide the useful information on the long-span structure design through the more appropriate analysis of the image.

  • PDF