• Title/Summary/Keyword: long rainfall

Search Result 561, Processing Time 0.027 seconds

Rainfall and Performance of Soil-Reinforced Regtaining Wall - Investigation on Case Histories (강우와 보강토 옹벽의 거동 - 시공 및 붕괴사례 고찰)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.17-24
    • /
    • 2006
  • This paper presents the two field walls that demonstrate the effect of rainfall on the performance of soil-reinforced retaining wall. A field test wall constructed in Geotechnical Experimental Site at Sungkyunkwan University has been monitored for more than 8 months to study the long-term behavior of soil-reinforced retaining wall. The measured data showed a good correlation between rainfall and wall movement after wall completion. A case of failed soil-reinforced retaining wall also is presented to highlight the effect of rainfall on the performance of soil-reinforced retaining wall. Implications of the findings are discussed.

  • PDF

Analysis of Hydrologic Geo-Spatial Information Using Runoff-Management Model (유출관리모형을 활용한 수문학적 공간정보 분석)

  • Lee, Sang-Jin;Noh, Joon-Woo;Ahn, Jung-Min;Kim, Joo-Cheol
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.97-104
    • /
    • 2009
  • GIS (Geographic Information System) is very useful in describing basin wide geographic characteristics and hydrologic analysis. This study estimated long term hydrologic variations in the Geum river basin using the SSARR rainfall runoff simulation model to provide reliable hydrologic information associated with rainfall runoff management module. Calibrated various hydrologic information such as soil moisture index, water use, direct and base flow are generated using GIS tools to display spatial hydrologic information in the unit of subbasin of target watershed. In addition, the graphic user interface toolkit designed for data compilation is expected to support efficient basin wide rainfall runoff analysis.

  • PDF

Analysis of Spatical Distribution of Surface Runoff in Seoul City using L-THIA: Case Study on Event at July 27, 2011 (L-THIA를 이용한 서울특별시 유출량 공간적 분석: 2011년 7월 27일 강우를 중심으로)

  • Jeon, Ji-Hong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.171-183
    • /
    • 2011
  • Temporal and spatical surface runoff by heavy rainfall during 25~28 July, 2011 causing urban flooding at Seoul were analyzed using Long-Term Hydrologic Impact Assessment (L-THIA). L-THIA was calibrated for 1988~1997 and validated for 1998~2007 using monthly observed data at Hangangseoul watershed which covers 90 % of Seoul city. As a results of calibration and validation of L-THIA at Hangangseoul watershed, Nash-Sutcliffe coefficients were 0.99 for calibration and 0.99 for validation. The simulated values were good agreement with observed data and both calibrated and validated levels were "very good" based on calibration criteria. The calibrated curve number (CN) values of residential and other urban area represented 87 % and 93 % of impervious area, respectively, which were maximum percentage of impervious area. As a result of L-THIA application at Seoul city during 25~28 July, 2011, most of rainfall (54 %, 287.49 mm) and surface runoff (65 %, 247.32) were generated at 27 July, 2011 and a significant amount of rainfall and surface runoff were occurred at southeastern Seoul city. As a result of bi-hourly spatial and temporal analysis during 27 July, 2011, surface runoff during 2:00~4:00 and 8:00~10:00 were much higher than those during other times and surface runoff located at Seocho-gu during 6:00~8:00 represented maximum value with maximum rainfall intensity which caused landslide from Umyun mountain.

Investigation on Effect of Rainfall on Performance of Soil-Reinforced Regtaining Wall (강우가 보강토 옹벽의 거동에 미치는 영향에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.47-55
    • /
    • 2003
  • This paper presents the two field walls that demonstrate the effect of rainfall on the performance of soil-reinforced retaining wall. A field test wall constructed in Geotechnical Experimental Site at Sungkyunkwan University has been monitored for more than 8 months to study the long-term behavior of soil-reinforced retaining wall. The measured data showed a good correlation between rainfall and wall movement after wall completion. A case of failed soil-reinforced retaining wall also is presented to highlight the effect of rainfall on the performance of soil-reinforced retaining wall. Implications of the findings are discussed.

  • PDF

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (I) Long-Term Runoff Analysis (확률론적 중장기 댐 유입량 예측 (I) 장기유출 해석)

  • Bae, Deg-Hyo;Kim, Jin-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.261-274
    • /
    • 2006
  • This study performs a daily long-term runoff analysis for 30 years to forecast medium- and long-term probabilistic reservoir inflows on the Soyang River basin. Snowmelt is computed by Anderson's temperature index snowmelt model and potenetial evaporation is estimated by Penman-combination method to produce input data for a rainfall-runoff model. A semi-distributed TOPMODEL which is composed of hydrologic rainfall-runoff process on the headwater-catchment scale based on the original TOPMODEL and a hydraulic flow routing model to route the catchment outflows using by kinematic wave scheme is used in this study It can be observed that the time variations of the computed snowmelt and potential evaporation are well agreed with indirect observed data such as maximum snow depth and small pan evaporation. Model parameters are calibrated with low-flow(1979), medium-flow(1999), and high-flow(1990) rainfall-runoff events. In the model evaluation, relative volumetric error and correlation coefficient between observed and computed flows are computed to 5.64% and 0.91, respectively. Also, the relative volumetric errors decrease to 17% and 4% during March and April with or without the snowmelt model. It is concluded that the semi-distributed TOPMODEL has well performance and the snowmelt effects for the long-term runoff computation are important on the study area.

Studies on the Time Distribution of Heavy Storms (暴雨의 時間的 分布에 關한 硏究)

  • Lee, Keun-Hoo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.69-84
    • /
    • 1984
  • This study was carried out to investigate the time distribution of single storms and to establish the model of storm patterns in korea. Rainfall recording charts collected from 42 metheorological stations covering the Korean peninsula were analyzed. A single storm was defined as a rain period seperated from preceding and succeeding rainfall by 6 hours and more. Among the defined single storms, 1199 storms exceeding total rainfall of 80 mm were qualified for the study. Storm patterns were cklassified by quartile classification method and the relationship between cummulative percent of rainfalls and cummulative storm time was established for each quartile storm group. Time distribution models for each stations were prepared through the various analytical and inferential procedures. Obtained results are summarized as follows: 1. The percentile frequency of quartile storms for the first to the fourth quartile were 22.0%, 26.5%, 28.9% and 22.6%, respectively. The large variation of percentile frequency was show between the same quartile storms. The advanced type storm pattern was predominant in the west coastal type storm patterns predominantly when compared to the single storms with small total rainfalls. 3. The single storms with long storm durations tended to show delayed type storm patterns predominantly when compared to the single storms with short storm durations. 4. The percentile time distribution of quartile storms for 42 rin gaging stations was estimated. Large variations were observed between the percentiles of time distributions of different stations. 5. No significant differences were generally found between the time distribution of rainfalls with greater total rainfall and with less total rainfall. This fact suggests that the size of the total rainfall of single storms was not the main factor affecting the time distribution of heavy storms. 6. Also, no significant difference were found between the time distribution of rainfalls with long duration and with short duration. The fact indicates that the storm duration was no the main factor affecting the time distribution of heavy storms. 7. In Korea, among all single storms, 39.0% show 80 to 100mm of total rainfall which stands for the mode of the frequency distribution of total rainfalls. The median value of rainfalls for all single storms from the 42 stations was 108mm. The shape of the frequency distribution of total rainfalls showed right skewed features. No significant differences were shown in the shape of distribution histograms for total rainfall of quartile storms. The mode of rainfalls for the advanced type quartile storms was 80~100mm and their frequencies were 39~43% for respective quartiles. For the delayed type quartile storms, the mode was 80~100mm and their frequencies were 36!38%. 8. In Korea, 29% of all single storms show 720 to 1080 minutes of storm durations which was the highest frequency in the frequency distribution of storm durations. The median of the storm duration for all single storms form 42 stations was 1026 minutes. The shape of the frequency distribution was right skewed feature. For the advanced type storms, the higher frequency of occurrence was shown by the single storms with short durations, whereas for the delayed type quartile storms, the higher frequency was shown gy the long duration single storms. 9. The total rainfall of single storms was positively correlated to storm durations in all the stations throughout the nation. This fact was also true for most of the quartile storms. 10. The third order polynomial regression models were established for estimating the time distribution of quartile storms at different stations. The model test by relative error method resulted good agreements between estimated and observed values with the relative error of less than 0.10 in average.

  • PDF

A Long-Term Water Budget Analysis for an Ungaged River Baisn (미계측 유역의 장기 물수지 분석에 관한 연구)

  • Yoo, Keum Hwan;Kim, Tae Kyun;Yoon, Yong Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.113-119
    • /
    • 1991
  • In the present study, a methodology has been established for water budget analysis of a river basin for which monthyl rainfall and evaporation data are the only available hydrologic data. The monthly rainfall data were first converted into monthyl runoff data by an empirical formula from which long-term runoff data were generated by a stochastic generation mothod. Thomas-Fiering model. Based on the generated long-term data low flow frequency analysis was made for each of the oberved and generated data set, the low flow series of each data set being taken as the water supply for budget analysis. The water demands for various water utilization were projected according to the standard method and the net water consumption computed there of. With the runoff series of the driest year of each generated data set as an input water budget computation was made through the composite reservoirs comprised of small reserviors existing in the basin by deficit-supply method. The water deficit computed through the reservior operation study showed that the deficit radically increases as the return period of low flow becomes large. This indicates that the long-term runoff data generated by stochastic model are a necessity for a reliable water shortage forecasting to cope with the long-term water resourse planning of a river basin. F.E.M. program (ADINA) is also presented herein.

  • PDF

A Long-term Monitoring of Water Quality at Chongok Cave (천곡동굴의 수질환경 장기 모니터링)

  • Jun, Byonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.13-19
    • /
    • 2013
  • The Chongok karst cave which is located in Donghae-city, has high tourist and educational value due to existence of many doline(sink hole). Whereas this cave is easy to approach for the tourists, because this cave is located near the downtown, a high environmental riskiness such as sewage flowing has been also involved. In study, we observed the variation of water quality with long-term monitoring and investigated the possibility of existence of impact factor to water eco-system and determined the proper long-term monitoring factor among many monitoring criteria. The groundwater quality was maintained in the range of about $14^{\circ}C$ in temperature, over 10mg/l in dissolved oxygen and 7-8 in pH, so the impact factor in water eco-system was not observed. The guide line to make sure of tourist safety was determined to 60mm/d as daily rainfall. The conductivity was suggested to main factor for long-term monitoring main factor and pH/turbidity was suitable for the supplementary factor. For the seasonal variation monitoring, ORP was recommended.

Evaluation of Erosivity Index (EI) in Calculation of R Factor for the RUSLE

  • Kim, Hye-Jin;Song, Jin-A;Lim, You-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.112-117
    • /
    • 2012
  • The Revised Universal Soil Loss Equation (RUSLE) is a revision of the Universal Soil Loss Equation (USLE). However, changes for each factor of the USLE have been made in RUSLE which can be used to compute soil loss on areas only where significant overland flow occurs. RUSLE which requires standardized methods to satisfy new data requirements estimates soil movement at a particular site by utilizing the same factorial approach employed by the USLE. The rainfall erosivity in the RUSLE expressed through the R-factor to quantify the effect of raindrop impact and to reflect the amount and rate of runoff likely is associated with the rain. Calculating the R-factor value in the RUSLE equation to predict the related soil loss may be possible to analyse the variability of rainfall erosivity with long time-series of concerned rainfall data. However, daily time step models cannot return proper estimates when run on other specific rainfall patters such as storm and daily cumulative precipitation. Therefore, it is desirable that cross-checking is carried out amongst different time-aggregations typical rainfall event may cause error in estimating the potential soil loss in definite conditions.

A development of multisite hourly rainfall simulation technique based on neyman-scott rectangular pulse model (Neyman-Scott Rectangular Pulse 모형 기반의 다지점 강수모의 기법 개발)

  • Moon, Jangwon;Kim, Janggyeong;Moon, Youngil;Kwon, Hyunhan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.913-922
    • /
    • 2016
  • A long-term precipitation record is typically required for establishing the reliable water resources plan in the watershed. However, the observations in the hourly precipitation data are not always consistent and there are missing values within the time series. This study aims to develop a hourly rainfall simulator for extending rainfall data, based on the well-known Neyman-Scott Rectangular Pulse Model (NSRPM). Moreover, this study further suggests a multisite hourly rainfall simulator to better reproduce areal rainfalls for the watershed. The proposed model was validated with a network of five weather stations in the Uee-stream watershed in Seoul. The proposed model appeared a reasonable result in terms of reproducing most of the statistics (i.e. mean, variance and lag-1 autocovariance) of the rainfall time series at various aggregation levels and the spatial coherence over the weather stations.