• Title/Summary/Keyword: long electrode

Search Result 416, Processing Time 0.034 seconds

HRV Evaluation under Stress Condition by Using Patch Type Bipolar Heart Activity Monitoring System (패치형 바이폴라 심장활동 모니터링 시스템을 이용한 스트레스 상태의 HRV 평가)

  • Yang, Heui-Kyung;Lee, Jeong-Whan;Lee, Young-Jae;Kim, Kyeong-Seop;Lee, Kang-Hwi;Choi, Hee-Jung
    • Science of Emotion and Sensibility
    • /
    • v.12 no.2
    • /
    • pp.161-168
    • /
    • 2009
  • In this study, we have developed the patch type HAMS (Heart Activity Monitoring System) which is non-restricted, non-awarable and non-invasive. The module using wireless telecommunication to receive the ECG (electrocardiogram) signal at the computer has mobility which it easily monitors the heart activity of subjects in no time for long term at any time and places. We developed the small patch type electrode which can be attached on the chest. Also the reliability and moving artifact of ECG signal measured by this electrode have been verified. Using HAMS, we measured the HRV (Heart Rate Variability) parameters, the questionnaire evaluation for anxiety and stress and the amount of stress hormone (cotisol) to evaluate the stress effect in HRV on the same subject. As a result of comparing the values under non stressed and stressed condition, there was significant difference on many parameters. And the parameter highly related with stress on Pearson's Correlation Coefficient has been examined. These show that using HAMS is able to evaluate the function of autonomic nervous system. Therefore, we can predict heart problem in daily life by using HAMS. Also we expect that this module can be applied for more application as health monitoring system.

  • PDF

Effect of Thermally Grown TiO2 Interlayer on Chlorine Evolution Efficiency and Durability of Ti/RuO2-PdO-TiO2 Electrodes (열산화법으로 생성된 TiO2 중간보호층이 Ti/RuO2-PdO-TiO2전극의 염소발생 효율 및 내구성에 미치는 영향)

  • Park, Da Jung;Choi, Sung Mook;Lee, Kyu Hwan
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.4
    • /
    • pp.207-213
    • /
    • 2018
  • Not only efficiency of chlorine evolution reaction (CER) but also durability namely service life is very important property in dimensional stable anode for Ballast Water Management System (BWMS) for marine ships. Many researchers have been focused on improving efficiency of CER by controlling composition, phase and surface area for a long time, but the efforts to increase durability was relatively small. In this study, we have investigated the effect of $TiO_2$ protective interlayers on efficiency and durability of DSA electrodes. $TiO_2$ protective interlayers were prepared by thermal oxidation at 500, 600 and $700^{\circ}C$ on Ti substrate. And then the DSA electrodes consisting of $Ti/RuO_2-PdO-TiO_2$ were prepared by thermal decomposition method on $TiO_2$ interlayers. The efficiencies of CER of DSA electrodes without $TiO_2$ interlayer and with $TiO_2$ interlayer grown at 500, 600 and $700^{\circ}C$ were 94.19, 94.45, 84.60 and 76.75% respectively. On the otherhand, durabilities were 30, 55, 90 and 65 hours respectively. In terms of industrial aspect, the performance of DSA is considered high efficiency and durability which can correspond to total production of chlorine. If we considered the performance index of DSA as the product of efficiency and durability, performance indices could be recalculated as 28.26, 50.85, 76.14 and 49.89 respectively. As the thermal oxidation temperature increasing, life time were increased remarkerbly, while efficiency of CER was decreased slightly. As a result, DSA electrode with $TiO_2$ interlayer grown at $600^{\circ}C$ has shown about 2.7 times performace of original DSA electrode without $TiO_2$ interlayer.

Self-Curable Humidity-Sensitive Polyelectrolytes Attached to the Alumina Substrate for the Humidity Sensor and their Stability in Water (알루미나 기재에 부착된 습도센서용 자기 가교형 감습성 전해질 고분자의 내수성)

  • Han, Dae-Sang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.313-320
    • /
    • 2010
  • New cinnamate group-containing copolymers for a self-curable, humidity-sensitive polyelectrolyte and polymeric anchoring agents were prepared by copolymerization of [2-[(methacryloyloxy) ethyl]dimethyl]propyl ammonium bromide(MEPAB), methyl methacrylate(MMA), 3-(trimethoxysilyl) propyl methacrylate(TMSPM) and 2-(cinnamoyloxy)ethyl methacrylate(CEMA). Photocrosslinkable copolymer composed of MEPAB/MMA/TMSPM/CEMA=70/20/0/10 were used for humidity-sensitive membrane, and those of 50/0/20/30 and 0/0/50/50 were used for polymeric anchoring agents. 3- (Triethoxysilyl)propyl cinnamate(TESPC) was also used as a surface-pretreating agent for the comparison of capability of attachment of polyelectrolyte to the electrode surface with polymeric photocurable silanecoupling agents. Pretreatment of the electrode substrate with anchoring agents was performed to form a cinnamate thin film on the electrode through covalent bonds. When the sensors were irradiated with UV light, the anchoring of a polyelectrolyte into the substrate was carried out via the [2$\pi$+2$\pi$] cycloaddition. The resulting sensors using polymeric anchoring agents and TESPC showed water durability with increase of resistance by 60~85%, which is corresponding to the reduction of 2.25~3.15%RH, after soaking in water for 24 h. They showed good hysteresis (-0.2%RH), response time (90 sec) and long-term stability at high temperature and humidity.

자연전위의 효율적 측정을 위한 전극의 잡음요소 분석

  • Song, Seong-Ho;Gwon, Byeong-Du
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • We performed a long-term monitoring of self-potential(SP) using the Cu-CuSO₄non-polarizable electrode and copper-clad electrodes(CCE) in a test site in order to analyze the effects of surrounding environmental noises such as temperature, rainfall and soil moisture content on the electrodes. Analysis of the temperature dependence of the non-polarizable electrodes showed that is temperature coefficient was about +0.5 mV/°Fwhen its end was exposed to atmosphere while it was less than +0.5 mV/℃ when submerged into the subsurface, which reflects that there exists an 8 to 11 hour lag between temperatures at the depth of 15 cm and atmosphere. CCE was independent of atmospheric temperature in subsurface but showed temperature coefficient of 1.0 mV/℃ when exposed to atmosphere. Drifts of 1 to 2 mV recorded with the non-polarizable electrode directly related to the soil moisture content when it was buried in subsurface. Drift with CCE also showed similar trend to the soil moisture content, and 5 mV drift was recorded according to 5% of daily variation. The soil moisture content had strong effects on the measurement with CCE in rainfall since the flow potential is generated on the surface of the electrode.

  • PDF

Durability Evaluation of Stationary PEMFC MEA by OCV Holding Method (정치용 PEMFC MEA의 OCV 유지 방법에 의한 내구 평가)

  • Oh, So-Hydong;Lee, Mihwa;Yun, Jeawon;Lee, Hakju;Kim, Wookwon;Na, Il-Chai;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.344-350
    • /
    • 2019
  • Durability is very important for the commercialization of membranes and electrode assemblies (MEA) developed for proton exchange membrane fuel cells (PEMFC). Durability evaluation of stationary PEMFC MEA has a problem that the voltage change rate should be measured for a long time over 1000 hours under constant current conditions. In this study, the electrochemical durability evaluation protocol of membranes (OCV holding method) using to vehicle MEAs was applied to the stationary MEA for the purpose of shortening the durability evaluation time. After operation of the stationary and automobile MEA for 168 hours under conditions of OCV, cathode oxygen, $90^{\circ}C$ and relative humidity of 30%, I-V, LSV, CV, impedance and FER were measured and compared. When the hydrogen permeability, OCV change, ionic conductivity, and fluorine flow rate, which represent the durability of the membrane after degradation, were all examined, it was shown that durability of stationary MEA membrane was better than that of vehicles MEA membrane. In addition, the electrode degradation of stationary MEA was smaller than that of vehicles MEA after degradation operation. It was possible to evaluate in a short time using automotive protocol that the durability of stationary MEA was superior that of vehicle MEA in terms of membrane and the electrode.

Removal of Hydrogen Fluoride from Waterjet Plasma Wastewater by Electrocoagulation (전해응집법에 의한 불화수소 함유 워터젯 플라즈마 폐수처리)

  • Lee, Chae Hong;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.702-708
    • /
    • 2012
  • Tetrafluoromethane ($CF_4$) has been used as etching and Chemical Vapor Deposition (CVD) gases for semiconductor manufacturing processes. These gases need to be removed efficiently because of their strong absorption of infrared radiation and long atmospheric lifetimes which cause the global warming effect. Also, the wastewater including the fluorine is caused by of the ground water pollution. Long-term consumption of water containing excessive fluoride can lead to fluorosis of the teeth and bones. The wastewater including the fluorine among the by-product which is generated by using the waterjet plasma after destroying $CF_4$ by HF is generated. The system which can remove the hydrogen fluoride among the wastewater by using the electrocoagulation using this wastewater the aluminum electrode was developed. The operating condition such as initial pH, electrocoagulation time, wastewater flow rate, current density were investigated experimentally using a electrocoagulation. Through the parametric studies, the highest hydrogen fluoride destruction of 85% was achieved at 3.5 initial pH, 10 min electrocoagulation time, 10 mL/min wastewater flow rate and $159A/m^2$ current density.

In situ UHV TEM studies on nanobubbles in graphene liquid cells

  • Shin, Dongha;Park, Jong Bo;Kim, Yong-Jin;Kim, Sang Jin;Kang, Jin Hyoun;Lee, Bora;Cho, Sung-Pyo;Novoselov, Konstantin S.;Hong, Byung Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.102-102
    • /
    • 2016
  • Water, which is most abundant in Earth surface and very closely related to all forms of living organisms, has a simple molecular structure but exhibits very unique physical and chemical properties. Even though tremendous effort has been paid to understand this nature's core substance, there amazingly still lefts much room for scientist to explore its novel behaviors. Especially, as the scale goes down to nano-regime, water shows extraordinary properties that are not observable in bulk state. One of such interesting features is the formation of nanoscale bubbles showing unusual long-term stability. Nanobubbles can be spontaneously formed in water on hydrophobic surface or by decompression of gas-saturated liquid. In addition, the nanobubbles can be generated during electrochemical reaction at normal hydrogen electrode (NHE), which possibly distorts the standard reduction potential at NHE as the surface nanobubble screens the reaction with electrolyte solution. However, the real-time evolution of these nanobubbles has been hardly studied owing to the lack of proper imaging tools in liquid phase at nanoscale. Here we demonstrate, for the first time, that the behaviors of nanobubbles can be visualized by in situ transmission electron microscope (TEM), utilizing graphene as liquid cell membrane. The results indicate that there is a critical radius that determines the long-term stability of nanobubbles. In addition, we find two different pathways of nanobubble growth: i) Ostwald ripening of large and small nanobubbles and ii) coalescence of similar-sized nanobubbles. We also observe that the nucleation and growth of nanoparticles and the self-assembly of biomolecules are catalyzed at the nanobubble interface. Our finding is expected to provide a deeper insight to understand unusual chemical, biological and environmental phenomena where nanoscale gas-state is involved.

  • PDF

Technical Note: Development of Wireless Electrooculorgraphy System to Measure Vestibuloocular Reflex (단신: 전정 반사 분석을 위한 안구 움직임 무선 측정 장치 개발)

  • Park, Yang-Sun;Kim, Hyung-Sik;Yi, Jeong-Han;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.39-43
    • /
    • 2008
  • The purpose of this study was to develop EOG system for collecting eye movement patterns to investigate visual function and position and the level of balancing. This small and partable wireless EOG system was enabled to collect stable signals without hindering any kind of sports movement. This system was consist of four parts: amplifier, main process with wireless transmitter, receiver, and display. Three EOG electrodes were used and placed on right(+), left(-) sides of eyes, and between eyes as a reference. This system was possible to measure signals for relatively long duration but the degeneration of electrodes may magnify measurement errors when collecting time was getting longer. Thus, dry electrodes may be applied to the system when long term measurement is needed for future studies.

Behaviors of Impulse Ground Impedances Associated with the Current Injection Point in a Ground Rod (봉상 접지전극에시 전류유입위치에 따른 임펄스 접지임피던스의 특성)

  • Lee, Bok-Hee;Jeong, Dong-Cheol;Lee, Su-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.94-100
    • /
    • 2005
  • This paper presents the behaviors of transient and effective impulse impedances of a long ground rod associated with the current injection points. The laboratory test for the time domain performance of actual-sized model ground rod subjected to a lightning stroke current has been carried out The transient ground impedances of long ground rods under impulse currents were higher than the ground resistance. Both of the ground resistance and the effective impulse ground impedance decrease with increasing the length of the ground rods. Also, the effective impulse ground impedances are significantly increased in fast rise time ranges. The reduction of the ground resistance is decisive to improve the impulse impedance characteristics of grounding systems. When the test current is injected at the bottom of ground rod, the oscillating pulses with high frequency are included on the wave front of ground rod potential and the effective impulse impedances are higher than any other cases.

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.