DOI QR코드

DOI QR Code

Behaviors of Impulse Ground Impedances Associated with the Current Injection Point in a Ground Rod

봉상 접지전극에시 전류유입위치에 따른 임펄스 접지임피던스의 특성

  • 이복희 (인하대학교 전자전기공학부) ;
  • 정동철 ((주)한진중공업, 인하대 대학원 전기공학과) ;
  • 이수봉 (인하대 대학원 전기공학과)
  • Published : 2005.01.01

Abstract

This paper presents the behaviors of transient and effective impulse impedances of a long ground rod associated with the current injection points. The laboratory test for the time domain performance of actual-sized model ground rod subjected to a lightning stroke current has been carried out The transient ground impedances of long ground rods under impulse currents were higher than the ground resistance. Both of the ground resistance and the effective impulse ground impedance decrease with increasing the length of the ground rods. Also, the effective impulse ground impedances are significantly increased in fast rise time ranges. The reduction of the ground resistance is decisive to improve the impulse impedance characteristics of grounding systems. When the test current is injected at the bottom of ground rod, the oscillating pulses with high frequency are included on the wave front of ground rod potential and the effective impulse impedances are higher than any other cases.

본 논문은 전류유입위치에 따른 봉상접지전극의 과도 및 실효임펄스임피던스의 특성에 관한 것으로 뇌격전류를 인가하여 실규모 접지봉에 대한 시간영역에서의 성능을 평가하였다. 임펄스전류가 가해진 봉상접지전극의 과도 접지임피던스는 접지저항보다 높게 나타났으며, 접지전극의 길이가 길어짐에 따라 접지저항과 실효임펄스접지임피던스는 감소되었다. 또한 실효임펄스접지임피던스는 짧은 시간범위에서는 급격하게 증가하였다. 접지저항의 저감은 접지시스템의 임펄스임피던스 특성의 개선에 결정적인 역할을 한다. 임펄스전류를 접지봉의 하단에 인가하였을 때 접지봉 전위의 파두부에 고주파의 진동 파형이 포함되고 실효임펄스임피던스는 다른 경우보다 높게 나타났다.

Keywords

References

  1. N. Fujimoto, E. P. Dick, S. A. Boggs and G. L. Ford, 'Transient Ground Potential Rise in Gas-Insulated Substations-Experimental Studies', IEEE Trans. Vol.PAS-101, No.10, pp.3603-3609, 1982 https://doi.org/10.1109/TPAS.1982.317033
  2. S. Karaki, et al., 'Transient Impedance of GIS Grounding Grid', IEEE Trans. Vol.PD-10, No.2, pp.723-738, 1995
  3. T. Takahashi, 'A Part of Grounding for Lightning Protection Technique', J. IEIE of Japan, Vol.9, pp.671-676, 1989
  4. J. H. Bogensperger, J. Frei and S. Pack, 'Resistance of Grounding Systems Stationary and Transient Behavior', Proc. 9th ISH, p.6715, 1995
  5. 이복희, 이승칠 '정보통신설비의 뇌보호', 인하대학교 출판부, pp.94-98, 2004
  6. IEEE Std 81.2-1991, 'IEEE Guide for Measurement of Impedance and Safety Characteristics of Large, Extended or Interconnected Grounding Systems', IEEE Inc., pp.1731, 1991
  7. Z. Stojkovic, et al., 'Sensitivity Analysis of Experimentally Determined Grounding Grid Impulse Characteristics', IEEE Trans., Vol. PD-13, No. 4, pp.1136-1141, 1998
  8. B. H. Lee, J. S. Park and S. C. Lee, 'Experimental Investigations of Transient Impedances of Some Grounding Systems', 1997 Japan-Korea Joint Syms. ED & HVE, pp.237-240, 1997
  9. B. R. Gupta and B. Thapar, 'Impulse Impedance of Grounding Grids', IEEE Trans. Vol.PAS-99, No.6, pp.214-218, 1980
  10. M. Ramamoorty, M. M. Babu Narayanan, S. Parameswaran and D. Mukhedkar, 'Transient Performance of Grounding Grids', IEEE Trans. Vol.PD-4, pp.2053-2058, No.4, 1989
  11. W. Xiong and F. P. Dawalibi, 'Transient Performance of Substation Grounding Systems Subjected to Lightning and Similar Surge Currents', IEEE Trans. Vol.PD-9, No.3, pp.1412-1417, 1994.4