• 제목/요약/키워드: long distance face recognition

검색결과 12건 처리시간 0.02초

거리별 얼굴영상 자동 생성 방법을 이용한 원거리 얼굴인식 시스템 (Long Distance Face Recognition System using the Automatic Face Image Creation by Distance)

  • 문해민;반성범
    • 전자공학회논문지
    • /
    • 제51권11호
    • /
    • pp.137-145
    • /
    • 2014
  • 본 논문에서는 지능형 영상 감시시스템을 위한 LDA기반 원거리 얼굴인식 알고리즘을 제안한다. 기존 단일 거리 얼굴영상을 학습으로 사용한 얼굴인식 알고리즘은 원거리로 갈수록 얼굴인식률이 떨어지는 문제점이 있다. 실제 거리별 얼굴영상을 사용한 방법은 얼굴인식률은 향상되지만 사용자가 직접 움직이며 학습용 거리별 얼굴영상을 취득해야하는 문제점이 있다. 그러므로 본 논문에서는 단일 거리에서 취득한 얼굴영상을 이용해 거리별 얼굴영상을 자동으로 생성하여 학습으로 사용하는 방법을 제안한다. 제안하는 방법은 기존 얼굴인식 방법과 동일한 수준의 사용자 협조에서 거리별 사용자 등록영상을 생성할 수 있는 장점이 있다. 실험결과, 제안한 알고리즘은 기존 단일 거리 학습영상 기반 알고리즘에 비해 근거리에서 평균 16.3%, 원거리에서 평균 18.0% 향상된 얼굴인식 성능을 나타냈고, 실제 거리별 얼굴영상을 사용한 방법보다 근거리에서 평균 4.3%감소했지만, 원거리에서는 동일한 얼굴인식 성능을 나타냈다.

줌 카메라를 통해 획득된 거리별 얼굴 영상을 이용한 원거리 얼굴 인식 기술 (The Long Distance Face Recognition using Multiple Distance Face Images Acquired from a Zoom Camera)

  • 문해민;반성범
    • 정보보호학회논문지
    • /
    • 제24권6호
    • /
    • pp.1139-1145
    • /
    • 2014
  • 지능형 서비스를 제공하는 로봇에서 특정 사람을 인지하거나 구별하는 인식 기술은 매우 중요하다. 기존 단일 거리 얼굴 영상을 학습으로 사용한 얼굴 인식 알고리즘은 원거리로 갈수록 얼굴 인식률이 떨어지는 문제점이 있다. 실제 거리별 얼굴 영상을 이용한 방법은 얼굴 인식률은 향상되지만, 사용자 협조가 요구되는 단점이 있다. 본 논문에서는 줌카메라를 통해 거리별 얼굴 영상을 획득하여 학습으로 사용하는 LDA 기반 원거리 얼굴 인식을 제안한다. 제안하는 방법은 기존 단일거리 얼굴 영상을 학습으로 이용한 방법에 비해 7.8% 향상된 성능을 보였고, 거리별 얼굴 영상을 학습으로 이용한 방법과 비교했을 때 8.0% 저하된 성능을 보였다. 그러나 거리별 얼굴 영상을 취득하기 위해 추가적인 시간과 사용자 협조가 요구되지 않는 장점이 있다.

영상 정규화 및 얼굴인식 알고리즘에 따른 거리별 얼굴인식 성능 분석 (Performance Analysis of Face Recognition by Distance according to Image Normalization and Face Recognition Algorithm)

  • 문해민;반성범
    • 정보보호학회논문지
    • /
    • 제23권4호
    • /
    • pp.737-742
    • /
    • 2013
  • 최근 감시시스템은 휴먼인식 기술을 활용하여 스스로 판단하고 대처할 수 있는 지능형으로 발전하고 있다. 기존 얼굴인식 기술은 근거리에서 인식성능이 우수하지만 원거리로 갈수록 인식률이 떨어진다. 본 논문에서는 원거리 휴먼인식을 위해 거리별 얼굴영상을 학습으로 사용한 얼굴인식에서 보간법 및 얼굴인식 알고리즘에 따른 얼굴인식률의 성능을 분석한다. 영상 정규화에는 최근접 이웃, 양선형, 양3차회선, Lanczos3 보간법을 사용하고, 얼굴인식 알고리즘은 PCA와 LDA를 사용한다. 실험결과, 영상 정규화로 양선형 보간법과 얼굴인식 알고리즘으로 LDA를 사용했을 때 우수한 성능을 나타냄을 확인하였다.

Photon-counting linear discriminant analysis for face recognition at a distance

  • Yeom, Seok-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권3호
    • /
    • pp.250-255
    • /
    • 2012
  • Face recognition has wide applications in security and surveillance systems as well as in robot vision and machine interfaces. Conventional challenges in face recognition include pose, illumination, and expression, and face recognition at a distance involves additional challenges because long-distance images are often degraded due to poor focusing and motion blurring. This study investigates the effectiveness of applying photon-counting linear discriminant analysis (Pc-LDA) to face recognition in harsh environments. A related technique, Fisher linear discriminant analysis, has been found to be optimal, but it often suffers from the singularity problem because the number of available training images is generally much smaller than the number of pixels. Pc-LDA, on the other hand, realizes the Fisher criterion in high-dimensional space without any dimensionality reduction. Therefore, it provides more invariant solutions to image recognition under distortion and degradation. Two decision rules are employed: one is based on Euclidean distance; the other, on normalized correlation. In the experiments, the asymptotic equivalence of the photon-counting method to the Fisher method is verified with simulated data. Degraded facial images are employed to demonstrate the robustness of the photon-counting classifier in harsh environments. Four types of blurring point spread functions are applied to the test images in order to simulate long-distance acquisition. The results are compared with those of conventional Eigen face and Fisher face methods. The results indicate that Pc-LDA is better than conventional facial recognition techniques.

모바일 로봇을 위한 저해상도 영상에서의 원거리 얼굴 검출 (Detection of Faces Located at a Long Range with Low-resolution Input Images for Mobile Robots)

  • 김도형;윤우한;조영조;이재연
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.257-264
    • /
    • 2009
  • This paper proposes a novel face detection method that finds tiny faces located at a long range even with low-resolution input images captured by a mobile robot. The proposed approach can locate extremely small-sized face regions of $12{\times}12$ pixels. We solve a tiny face detection problem by organizing a system that consists of multiple detectors including a mean-shift color tracker, short- and long-rage face detectors, and an omega shape detector. The proposed method adopts the long-range face detector that is well trained enough to detect tiny faces at a long range, and limiting its operation to only within a search region that is automatically determined by the mean-shift color tracker and the omega shape detector. By focusing on limiting the face search region as much as possible, the proposed method can accurately detect tiny faces at a long distance even with a low-resolution image, and decrease false positives sharply. According to the experimental results on realistic databases, the performance of the proposed approach is at a sufficiently practical level for various robot applications such as face recognition of non-cooperative users, human-following, and gesture recognition for long-range interaction.

  • PDF

역전파가 제거된 CNN과 LDA를 이용한 얼굴 영상 해상도별 얼굴 인식률 분석 (Performance Analysis of Face Recognition by Face Image resolutions using CNN without Backpropergation and LDA)

  • 문해민;박진원;반성범
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.24-29
    • /
    • 2016
  • 높은 수준의 지능형 영상 감시 시스템을 만족하기 위해서는 단순히 객체를 검출해서 분류하는 것뿐만 아니라 대상에 대한 정확한 신원 정보까지 확인할 수 있어야 한다. 사람을 구별하는 대표적인 얼굴 인식은 얼굴 자체의 가변성뿐만 아니라 조명, 배경, 카메라의 각도와 같은 외적요인에 따라 인식률의 변화가 발생한다. 본 논문에서는 다양한 실험을 통해 거리 변화에 의한 얼굴 영상의 크기 변화에 강인한 얼굴 인식 방법을 분석한다. 얼굴 인식 실험은 1m~5m에서 추출한 실제 거리별 얼굴 영상으로 이루어졌다. 실험결과, 1인당 학습 영상의 수가 많을 경우는 얼굴 특징 추출 방법으로 LDA를 사용한 방법이 전체 평균 75.4%로 가장 우수한 성능을 나타냈다. 하지만 1인당 학습 영상의 수가 5장 이하가 될 때는 CNN을 사용한 방법이 69.8%로 가장 우수한 성능을 나타냈다. 또한, 저해상도 얼굴 인식의 경우 얼굴 영상의 크기가 $15{\times}15$보다 작아지면 인식률이 급격히 감소함을 확인했다.

Tiny and Blurred Face Alignment for Long Distance Face Recognition

  • Ban, Kyu-Dae;Lee, Jae-Yeon;Kim, Do-Hyung;Kim, Jae-Hong;Chung, Yun-Koo
    • ETRI Journal
    • /
    • 제33권2호
    • /
    • pp.251-258
    • /
    • 2011
  • Applying face alignment after face detection exerts a heavy influence on face recognition. Many researchers have recently investigated face alignment using databases collected from images taken at close distances and with low magnification. However, in the cases of home-service robots, captured images generally are of low resolution and low quality. Therefore, previous face alignment research, such as eye detection, is not appropriate for robot environments. The main purpose of this paper is to provide a new and effective approach in the alignment of small and blurred faces. We propose a face alignment method using the confidence value of Real-AdaBoost with a modified census transform feature. We also evaluate the face recognition system to compare the proposed face alignment module with those of other systems. Experimental results show that the proposed method has a high recognition rate, higher than face alignment methods using a manually-marked eye position.

Multi-Frame Face Classification with Decision-Level Fusion based on Photon-Counting Linear Discriminant Analysis

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.332-339
    • /
    • 2014
  • Face classification has wide applications in security and surveillance. However, this technique presents various challenges caused by pose, illumination, and expression changes. Face recognition with long-distance images involves additional challenges, owing to focusing problems and motion blurring. Multiple frames under varying spatial or temporal settings can acquire additional information, which can be used to achieve improved classification performance. This study investigates the effectiveness of multi-frame decision-level fusion with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for each class. The fusion process comprises three stages: score normalization, score validation, and score combination. Candidate scores are selected during the score validation process, after the scores are normalized. The score validation process removes bad scores that can degrade the final output. The selected candidate scores are combined using one of the following fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed to demonstrate the robustness of multi-frame decision-level fusion in harsh environments. Out-of-focus and motion blurring point-spread functions are applied to the test images, to simulate long-distance acquisition. Experimental results with three facial data sets indicate the efficiency of the proposed decision-level fusion scheme.

A Multi-Scale Parallel Convolutional Neural Network Based Intelligent Human Identification Using Face Information

  • Li, Chen;Liang, Mengti;Song, Wei;Xiao, Ke
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1494-1507
    • /
    • 2018
  • Intelligent human identification using face information has been the research hotspot ranging from Internet of Things (IoT) application, intelligent self-service bank, intelligent surveillance to public safety and intelligent access control. Since 2D face images are usually captured from a long distance in an unconstrained environment, to fully exploit this advantage and make human recognition appropriate for wider intelligent applications with higher security and convenience, the key difficulties here include gray scale change caused by illumination variance, occlusion caused by glasses, hair or scarf, self-occlusion and deformation caused by pose or expression variation. To conquer these, many solutions have been proposed. However, most of them only improve recognition performance under one influence factor, which still cannot meet the real face recognition scenario. In this paper we propose a multi-scale parallel convolutional neural network architecture to extract deep robust facial features with high discriminative ability. Abundant experiments are conducted on CMU-PIE, extended FERET and AR database. And the experiment results show that the proposed algorithm exhibits excellent discriminative ability compared with other existing algorithms.

다중 분류기의 판정단계 융합에 의한 얼굴인식 (Multi-classifier Decision-level Fusion for Face Recognition)

  • 염석원
    • 대한전자공학회논문지SP
    • /
    • 제49권4호
    • /
    • pp.77-84
    • /
    • 2012
  • 얼굴인식 기술은 지능형 보안, 웹에서 콘텐츠 검색, 지능로봇의 시각부분, 머신인터페이스 등, 활용이 광범위 하다. 그러나 일반적으로 대상자의 표정과 포즈 변화, 주변의 조명 환경과 같은 문제가 있으며 이와 더불어 원거리에서 획득한 영상의 경우 저해상도를 비롯하여 블러와 잡음에 의한 영상의 열화 등의 여러 가지 어려움이 발생한다. 본 논문에서는 포톤 카운팅(Photon-counting) 선형판별법(Linear Discriminant Analysis)을 이용한 다중 분류기(Classifier)에 의한 판정을 융합하여 얼굴 영상 인식을 수행한다. Fisher 선형판별법은 집단 간 분산을 최대로 하고 집단 내 분산을 최소로 하는 공간으로 선형 투영하는 방법으로, 학습영상의 수가 적을 경우 특이행렬 문제가 발생하지만 포톤카운팅 선형 판별법은 이러한 문제가 없으므로 차원축소를 위한 전 처리 과정이 필요 없다. 본 논문의 다중 분류기는 포톤 카운팅 선형판별법의 유클리드 거리(Euclidean Distance) 또는 정규화된 상관(Normalized Correlation)을 적용하는 판정규칙에 따라 구성된다. 다중분류기의 판정의 융합은 각 분류기 cost의 정규화(Normalization), 유효화(Validation), 그리고 융합규칙(Fusion Rule)으로 구성된다. 각 분류기에서 도출된 cost는 같은 범위로 정규화된 후 유효화 과정에서 선별되고 Minimum, 또는 Average, 또는 Majority-voting의 융합규칙에 의하여 융합된다. 실험에서는 원거리에서 획득한 효과를 구현하기 위하여 고해상도 데이터베이스 영상을 인위적으로 Unfocusing과 Motion 블러를 이용하여 열화하여 테스트하였다. 실험 결과는 다중분류기 융합결과의 인식률은 단일분류기보다 높다는 것을 보여준다.