• Title/Summary/Keyword: logistic model

Search Result 1,975, Processing Time 0.029 seconds

The Comparative Software Reliability Cost Model of Considering Shape Parameter (형상모수를 고려한 소프트웨어 신뢰성 비용 모형에 관한 비교 연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • In this study, reliability software cost model considering shape parameter based on life distribution from the process of software product testing was studied. The shape parameter using the Erlang and Log-logistic model that is widely used in the field of reliability problems presented. The software failure model was used finite failure non-homogeneous Poisson process model, the parameters estimation using maximum likelihood estimation was conducted. In comparison result of software cost model based on the Erlang distribution and the log-logistic distribution software cost model, because Erlang model is to predict the optimal release time can be software, but the log-logistic model to predict to optimal release time can not be, Erlang distribution than the log-logistic distribution appears to be effective. In this research, software developers to identify software development cost some extent be able to help is considered.

Accidents Model of Arterial Link Sections by Logistic Model (로지스틱모형을 이용한 가로구간 사고모형)

  • Park, Byung-Ho;Lim, Jin-Kang;Han, Su-San
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.90-95
    • /
    • 2010
  • This study deals with the accident model of arterial link section in Cheongju. The objective is to develop the accident model of arterial link section using the logistic regression. In pursuing the above, the study uses the 258 accident data occurred at the 322 arterial link section. The main results are as follows. First, Nagellerke $R^2$ of developed accident model is analyzed to be 0.309 and t-values of variable that explains goodness of fit are evaluated to be significant. Second, the variables adopted in the model are AADT, the number of exit and entry. These variables are all analyzed to be statistically significant. Finally, the analysis of correct classification rate shows that the total accident of correct classification rate is analyzed to be 72.7% at the arterial link section.

Comparison of the Bass Model and the Logistic Model from the Point of the Diffusion Theory (확산이론 관점에서 로지스틱 모형과 Bass 모형의 비교)

  • Hong, Jung-Sik;Koo, Hoon-Young
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.37 no.2
    • /
    • pp.113-125
    • /
    • 2012
  • The logistic model and the Bass model have diverse names and formulae in diffusion theory. This diversity makes users or readers confused while it also contributes to the flexibility of modeling. The method of handling the integration constant, which is generated in process of deriving the closed form solution of the differential equation for a diffusion model, results in two different 'actual' models. We rename the actual four models and propose the usage of the models with respect to the purpose of model applications. The application purpose would be the explanation of historical diffusion pattern or the forecasting of future demand. Empirical validation with 86 historical diffusion data shows that misuse of the models can draw improper conclusions for the explanation of historical diffusion pattern.

Prediction of Galloping Accidents in Power Transmission Line Using Logistic Regression Analysis

  • Lee, Junghoon;Jung, Ho-Yeon;Koo, J.R.;Yoon, Yoonjin;Jung, Hyung-Jo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.969-980
    • /
    • 2017
  • Galloping is one of the most serious vibration problems in transmission lines. Power lines can be extensively damaged owing to aerodynamic instabilities caused by ice accretion. In this study, the accident probability induced by galloping phenomenon was analyzed using logistic regression analysis. As former studies have generally concluded, main factors considered were local weather factors and physical factors of power delivery systems. Since the number of transmission towers outnumbers the number of weather observatories, interpolation of weather factors, Kriging to be more specific, has been conducted in prior to forming galloping accident estimation model. Physical factors have been provided by Korea Electric Power Corporation, however because of the large number of explanatory variables, variable selection has been conducted, leaving total 11 variables. Before forming estimation model, with 84 provided galloping cases, 840 non-galloped cases were chosen out of 13 billion cases. Prediction model for accidents by galloping has been formed with logistic regression model and validated with 4-fold validation method, corresponding AUC value of ROC curve has been used to assess the discrimination level of estimation models. As the result, logistic regression analysis effectively discriminated the power lines that experienced galloping accidents from those that did not.

Variable Selection for Logistic Regression Model Using Adjusted Coefficients of Determination (수정 결정계수를 사용한 로지스틱 회귀모형에서의 변수선택법)

  • Hong C. S.;Ham J. H.;Kim H. I.
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.435-443
    • /
    • 2005
  • Coefficients of determination in logistic regression analysis are defined as various statistics, and their values are relatively smaller than those for linear regression model. These coefficients of determination are not generally used to evaluate and diagnose logistic regression model. Liao and McGee (2003) proposed two adjusted coefficients of determination which are robust at the addition of inappropriate predictors and the variation of sample size. In this work, these adjusted coefficients of determination are applied to variable selection method for logistic regression model and compared with results of other methods such as the forward selection, backward elimination, stepwise selection, and AIC statistic.

Landslide susceptibility mapping using Logistic Regression and Fuzzy Set model at the Boeun Area, Korea (로지스틱 회귀분석과 퍼지 기법을 이용한 산사태 취약성 지도작성: 보은군을 대상으로)

  • Al-Mamun, Al-Mamun;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-125
    • /
    • 2016
  • This study aims to identify the landslide susceptible zones of Boeun area and provide reliable landslide susceptibility maps by applying different modeling methods. Aerial photographs and field survey on the Boeun area identified landslide inventory map that consists of 388 landslide locations. A total ofseven landslide causative factors (elevation, slope angle, slope aspect, geology, soil, forest and land-use) were extracted from the database and then converted into raster. Landslide causative factors were provided to investigate about the spatial relationship between each factor and landslide occurrence by using fuzzy set and logistic regression model. Fuzzy membership value and logistic regression coefficient were employed to determine each factor's rating for landslide susceptibility mapping. Then, the landslide susceptibility maps were compared and validated by cross validation technique. In the cross validation process, 50% of observed landslides were selected randomly by Excel and two success rate curves (SRC) were generated for each landslide susceptibility map. The result demonstrates the 84.34% and 83.29% accuracy ratio for logistic regression model and fuzzy set model respectively. It means that both models were very reliable and reasonable methods for landslide susceptibility analysis.

Study on Accident Prediction Models in Urban Railway Casualty Accidents Using Logistic Regression Analysis Model (로지스틱회귀분석 모델을 활용한 도시철도 사상사고 사고예측모형 개발에 대한 연구)

  • Jin, Soo-Bong;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.482-490
    • /
    • 2017
  • This study is a railway accident investigation statistic study with the purpose of prediction and classification of accident severity. Linear regression models have some difficulties in classifying accident severity, but a logistic regression model can be used to overcome the weaknesses of linear regression models. The logistic regression model is applied to escalator (E/S) accidents in all stations on 5~8 lines of the Seoul Metro, using data mining techniques such as logistic regression analysis. The forecasting variables of E/S accidents in urban railway stations are considered, such as passenger age, drinking, overall situation, behavior, and handrail grip. In the overall accuracy analysis, the logistic regression accuracy is explained 76.7%. According to the results of this analysis, it has been confirmed that the accuracy and the level of significance of the logistic regression analysis make it a useful data mining technique to establish an accident severity prediction model for urban railway casualty accidents.

Estimation of Compressive Strength of Fly Ash Concrete subjected to High Temperature (고온조건하에서 플라이애시를 사용한 콘크리트의 압축강도증진 해석)

  • Han Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.99-105
    • /
    • 2006
  • In this paper, the estimation of compressive strength of concrete incorporating fly ash subjected to high temperature is discussed. Ordinary Portland cement and fly ash cement(30% of fly ash) were used, respectively. Water to binder ration ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also adopted for the experimental parameters. According to results, at the high temperature, FAC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated pozzolanic reaction subjected to high temperature. For strength estimation, Logistic model based on maturity equation and Carino model based on equivalent age were applied to verify the availability of estimation model. It shows that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.

Comparison of Regression Models for Estimating Ventilation Rate of Mechanically Ventilated Swine Farm (강제환기식 돈사의 환기량 추정을 위한 회귀모델의 비교)

  • Jo, Gwanggon;Ha, Taehwan;Yoon, Sanghoo;Jang, Yuna;Jung, Minwoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.61-70
    • /
    • 2020
  • To estimate the ventilation volume of mechanically ventilated swine farms, various regression models were applied, and errors were compared to select the regression model that can best simulate actual data. Linear regression, linear spline, polynomial regression (degrees 2 and 3), logistic curve, generalized additive model (GAM), and gompertz curve were compared. Overfitting models were excluded even when the error rate was small. The evaluation criteria were root mean square error (RMSE) and mean absolute percentage error (MAPE). The evaluation results indicated that degree 3 exhibited the lowest error rate; however, an overestimation contradiction was observed in a certain section. The logistic curve was the most stable and superior to all the models. In the estimation of ventilation volume by all of the models, the estimated ventilation volume of the logistic curve was the smallest except for the model with a large error rate and the overestimated model.

Estimation of Compressive Strength of Concrete Using Blast Furnace Slag Subjected to High Temperature Environment (고온환경 조건하에서 고로슬래그를 사용한 콘크리트의 압축강도 증진 해석)

  • Han, Min-Cheol;Shin, Byung-Cheol
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.347-355
    • /
    • 2007
  • In this paper, estimation of the compressive strength of the concrete incorporating blast furnace slag subjected to high temperature was discussed. Ordinary Portland cement and blast furnace slag cement (BSC;30% of blast furnace slag) were used, respectively. Water to binder ratio ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also chosen for the experimental parameters, respectively. At the high temperature, BSC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated latent hydration reaction subjected to high temperature. For the strength estimation, the Logistic model based on maturity equation and the Carino model based on equivalent age were applied to verify the availability of estimation model. It was found that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.