• Title/Summary/Keyword: locking system

Search Result 272, Processing Time 0.028 seconds

Implementation and modeling of wavelength tunable all-optical clok recovery using a semiconductor-fiber ring laser (고리형 반도체-광섬유 레이저를 이용한 파장 가변형 전광 동기 신호 재생 구현과 모델링)

  • 유봉안;김동환;이병호
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.3
    • /
    • pp.166-170
    • /
    • 2000
  • A wavelength tunable all-optical clock recovery using a semiconductor optical amplifier in a fiber ring cavity is proposed and demonstrated at the wavelength of 1530 nm to 1570 nm. A synchronized optical pulse train is recovered from 10 Gbps and 30 Gbps randomly generated optical pulse streams with injection locking technique. Also, the system responses to the perturbation and the input average power variation are analyzed by a large-signal model based on time-domain travelling wave equation. ation.

  • PDF

New higher-order triangular shell finite elements based on the partition of unity

  • Jun, Hyungmin
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • Finite elements based on the partition of unity (PU) approximation have powerful capabilities for p-adaptivity and solutions with high smoothness without remeshing of the domain. Recently, the PU approximation was successfully applied to the three-node shell finite element, properly eliminating transverse shear locking and showing excellent convergence properties and solution accuracy. However, the enrichment with the PU approximation results in a significant increase in the number of degrees of freedom; therefore, it requires greater computational cost, thus making it less suitable for practical engineering. To circumvent this disadvantage, we propose a new strategy to decrease the total number of degrees of freedom in the existing PU-based shell element, without loss of optimal convergence and accuracy. To alleviate the locking phenomenon, we use the method of mixed interpolation of tensorial components and perform convergence studies to show the accuracy and capability of the proposed shell element. The excellent performances of the new shell elements are illustrated in three benchmark problems.

Mechanical evaluation of the use of conventional and locking miniplate/screw systems used in sagittal split ramus osteotomy

  • Santos, Zarina Tatia Barbosa Vieira;Goulart, Douglas Rangel;Sigua-Rodriguez, Eder Alberto;Pozzer, Leandro;Olate, Sergio;Albergaria-Barbosa, Jose Ricardo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.2
    • /
    • pp.77-82
    • /
    • 2017
  • Objectives: The aim of this study was to compare the mechanical resistance of four different osteosyntheses modeled in two different sagittal split ramus osteotomy (SSRO) designs and to determine the linear loading in a universal testing machine. Materials and Methods: An in vitro experiment was conducted with 40 polyurethane hemimandibles. The samples were divided into two groups based on osteotomy design; Group I, right angles between osteotomies and Group II, no right angles between osteotomies. In each group, the hemimandibles were distributed into four subgroups according to the osteosynthesis method, using one 4-hole 2.0 mm conventional or locking plate, with or without one bicortical screw with a length of 12.0 mm (hybrid technique). Each subgroup contained five samples and was subjected to a linear loading test in a universal testing machine. Results: The peak load and peak displacement were compared for statistical significance using PASW Statistics 18.0 (IBM Co., USA). In general, there was no difference between the peak load and peak displacement related to osteotomy design. However, when the subgroups were compared, the osteotomy without right angles offered higher mechanical resistance when one conventional or locking 2.0 mm plate was used. One locking plate with one bicortical screw showed higher mechanical resistance ($162.72{\pm}42.55N$), and these results were statistically significantly compared to one conventional plate with monocortical screws (P=0.016) and one locking plate with monocortical screws (P=0.012). The difference in peak displacement was not statistically significant based on osteotomy design or internal fixation system configuration. Conclusion: The placement of one bicortical screw in the distal region promoted better stabilization of SSRO. The osteotomy design did not influence the mechanical behavior of SSRO when the hybrid technique was applied.

Speed control of induction motor for electric vehicles using PLL and fuzzy logic (PLL과 fuzzy논리를 이용한 전기자동차 구도용 유도전동기의 속도제어)

  • 양형렬;위석오;임영철;박종건
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.640-643
    • /
    • 1997
  • This paper describes speed controller of a induction motor for electric vehicles using PLL and Fuzzy logic. The proposed system is combined precise speed control of PLL and robust, fast speed control of Fuzzy logic. The motor speed is adaptively incremented or decremented toward the PLL locking range by the Fuzzy logic using information of sampled speed errors and then is maintained accurately by PLL. The results of experiment show excellence of proposed system and that the proposed system is appropriates to control the speed of induction motor for electric vehicles.

  • PDF

Efficient Isolation Level management Method for Multidimensional Index Structures (다차원 색인구조에서 효율적인 격리수준 보장 기법)

  • 송석일;곽윤식;유재수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.251-254
    • /
    • 2003
  • In order for multidimensional infer structures to be integrated into an existing database management system, proper concurrency control methods that guarantee all isolation levels supported by the database management system. Several concurrency control methods have been proposed. They ran be classified into predicate locking based methods and granular locking based methods. Most of them are difficult to implement and ran not be applied to non-tree structured index structures. In this paper, we propose a new concurrency control method that guarantee all isolation levels. It is easy to implement and can be applied to any type of index structures. We implement the proposed method and existing methods, and perform various experiments to show the superiority of the proposed algorithm.

  • PDF

Real-time SMA control for wire frame-based 3D shape display (와이어프레임 기반의 3차원 형상제시기의 실시간 SMA 제어)

  • Kim Y.M.;Chu Y.J.;Song J.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.295-296
    • /
    • 2006
  • We developed wire frame drive unit based on SMA for the 3D Shape display. Our basic concept is wire frame combination connected with a chain form which can create various shapes and it compared with pin array mechanism which is not able to display mushroom shape. It imitates antagonist mechanism of human musculoskeletal system. we create similar motion using repair-relaxation mechanism and locking mechanism by SMA. Therefore, in this paper, we propose SMA control solution for actuating repair-relaxation mechanism and locking mechanism. In our control system. we use optical sensor and quantitative angle between wire frames for closed loop control. And we supply amplified current for SMA by circuit composed of transistor and apply PWM signal to circuit for efficient control. So, wire frame drive unit enable diversity angle control based on sensor data. And then combination of wire frame drive units will create various objects.

  • PDF

The Flexible Characteristic of Reversible and Robust Nanohair Fastener

  • Park, Seung-Ho;Yoon, Young-Seok;Lee, Dong-Woo;Lee, Dong-Ik;You, Kyoung-Hwan;Pang, Chang-Hyun;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.432-432
    • /
    • 2011
  • Dry adhesion caused by Nanoscale contact comes up to important scientific issue. Herein, we introduce bendable nanohairy locking fastener system with high shear strength and mechanically flexible backing. The polymeric patches like velcro are composed of an array of straight nanohairs with 100 nm diameter and $1{\mu}m$ height. To fabricate high aspect vertical nanohairs, we used UV molding method with appropriately flexible and rigid polyurethane acrylate material on PET substrate. Two identical nanohairy patches are easily merged and locked each other induced by van der Waals force. Because nanohairs can be arrayed with high density ${\sim}4{\times}10^8/cm^2$, we can obtain high shear adhesion force on flat surface (~22 N/$cm^2$). Furthermore, we can obtian nanohairy locking system with maximum shear adhesion ~48 N/$cm^2$ of curved surface due to flexibility of PET substrate. We confirm the tendency that shear adhesion force increases, as radius of curvature increases.

  • PDF