• 제목/요약/키워드: location-based learning

검색결과 424건 처리시간 0.025초

AR에 적용 가능한 마커리스 기반의 실내 위치 측정 기법 (Measurement Technique of Indoor location Based on Markerless applicable to AR)

  • 김재형;이승호
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.243-251
    • /
    • 2021
  • 본 논문에서는 AR에 적용 가능한 마커리스 기반의 실내 위치 측정 기법을 제안한다. 제안한 기법은 다음과 같은 독창성을 갖는다. 첫 번째는 특징점을 추출하고 이를 이용하여 지역 패치를 생성하여 전체 이미지를 학습하지 않고 주변보다 더 유용한 지역 패치만을 학습하고 사용함으로써 더 빠른 연산이 가능하도록 한다. 두 번째는 Convolution Neural Network 구조를 사용한 딥러닝을 통해 학습을 진행하여 오차율을 줄여 정확도를 향상시킨다. 세 번째는 기존의 특징점 매칭 기법과는 다르게 좌우 이동을 포함한 실내 위치 측정이 가능하도록 한다. 네 번째는 매 프레임마다 새롭게 실내 위치를 측정하기 때문에 이동 중 앞쪽에서 발생한 오차가 누적되어 발생되는 것을 방지한다. 따라서 이동 거리가 길어져도 최종 도착점과 예측 실내 위치 간의 오차가 증가하지 않는다는 장점을 갖는다. 본 논문에서 제안하는 AR에 적용 가능한 마커리스 기반의 실내 위치 측정 기법의 소요시간과 정확도를 평가하기 위해 시행한 실험결과, 실제 실내 위치와 측정된 실내 위치의 차이가 평균 12.8cm, 최대 21.2cm로 측정되어서, 기존 IEEE 논문의 결과보다 우수한 실내 위치 측정 정확도를 나타내었다. 또한, 초당 20프레임으로 측정된 결과를 나타내어서 실시간으로 사용자의 실내 위치를 측정하는 것이 가능하다고 판단되었다.

위치기반서비스를 활용한 안드로이드 퀴즈 애플리케이션 구현 (Development of the Educational Android Application using Location Based Service)

  • 현동림;김종훈
    • 수산해양교육연구
    • /
    • 제24권3호
    • /
    • pp.416-423
    • /
    • 2012
  • Smartphone and Tablet PC has become a popular. So, various location-based service applications are being made in the field of advertising, games, and search. However, the location-based services application is lacking in the field of education. Therefore, this study proposes a Location-based service application for Tablet PC, which can be take advantage in school. The application was designed with these considerations in mind. First, the application to increase the participation of the students take the form of play. Second, participating students are influencing each other. Third, through the promotion of the cycle has allowed long-term operations. This application will be used usefully in an environment that students use a individual Tablet PC through the spread of e-textbooks.

Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm

  • Shallan, Osman;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.195-203
    • /
    • 2022
  • This paper presents the quantification and location damage detection of plane and space truss structures in a two-phase method to reduce the computations efforts significantly. In the first phase, a proposed damage indicator based on the residual force vector concept is used to get the suspected damaged members. In the second phase, using damage quantification as a variable, a teaching-learning based optimization algorithm (TLBO) is used to obtain the damage quantification value of the suspected members obtained in the first phase. TLBO is a relatively modern algorithm that has proved distinguished in solving optimization problems. For more verification of TLBO effeciency, the classical particle swarm optimization (PSO) is used in the second phase to make a comparison between TLBO and PSO algorithms. As it is clear, the first phase reduces the search space in the second phase, leading to considerable reduction in computations efforts. The method is applied on three examples, including plane and space trusses. Results have proved the capability of the proposed method to precisely detect the quantification and location of damage easily with low computational efforts, and the efficiency of TLBO in comparison to the classical PSO.

수소 충전소 최적 위치 선정을 위한 기계 학습 기반 방법론 (A Machine Learning based Methodology for Selecting Optimal Location of Hydrogen Refueling Stations)

  • 김수환;류준형
    • Korean Chemical Engineering Research
    • /
    • 제58권4호
    • /
    • pp.573-580
    • /
    • 2020
  • 최근 석유를 대체할 수송 에너지원으로 수소에 대한 관심이 커지고 있다. 수소의 장점을 극대화하기 위해서는 수소 충전소가 많이 보급되어야 한다. 본 논문은 수소 충전소를 보다 가깝게 이용 할 수 있는 최적 위치 선정 방법론을 제안하였다. 기존 에너지의 공급처인 주유소와 천연가스 충전소의 위치를 우선 참고하고, 인구, 등록 차량 수 등의 데이터를 추가 반영하여 수소자동차의 예상 충전 수요를 계산하였다. 기계 학습(machine learning) 기법 중 하나인 k-중심자 군집화(k-medoids Clustering)를 이용하여 예상 수요에 대응하는 최적 수소 충전소 위치를 계산하였다. 제안된 방법의 우수성은 서울의 사례를 통해 수치적으로 설명하였다. 본 방법론과 같은 데이터 기반 방법은 향후 수소의 보급 속도를 높여 환경친화적인 경제 체계를 구축하는데 기여할 수 있을 것이다.

머신러닝 기반 고속도로 내 수소충전소 최적입지 선정 연구 (A Study on the Optimal Location Selection for Hydrogen Refueling Stations on a Highway using Machine Learning)

  • 조재혁;김성수
    • 지적과 국토정보
    • /
    • 제51권2호
    • /
    • pp.83-106
    • /
    • 2021
  • 대기오염, 지구온난화 문제 등 환경 문제의 심각성이 대두되면서 청정 연료의 관심이 커지고 있다. 그 중 수소는 기존 화석연료와는 달리 연소 시 부산물로 수분만이 발생하는 대표적인 친환경 에너지원으로 현재 다양한 분야에서 주목을 받고 있다. 물류 분야에서도 수소를 활용한 물류 네트워크를 구축하기 위해 다양한 정책적 노력이 활발히 이루어지고 있다. 이러한 수소 물류 네트워크의 구축에 있어 수소충전소의 입지 결정은 매우 중요한 문제이다. 최근 개발된 수소추진(수소연료전지) 화물차에 수소를 공급하는 충전소는 수소 기반 물류체계가 본격적으로 자리 잡는 데 있어 필수 불가결한 요소이다. 이러한 수소충전소의 최적 입지를 결정하는 선행연구는 대부분 수리적 모형에 기반한 최적화 기법만을 사용하여 수소충전소의 최적 입지를 결정하고자 하였다. 본 연구에서는 기존 연구의 동향과는 차별화하여 최적화 기법의 중요한 투입 변수 중 하나인 충전소 후보지에 대한 공간적 특성을 검토하는 방법으로 머신러닝 모형들을 활용하고 그 적용가능성을 확인하였다. 머신러닝은 다양한 분야에서 우수한 성과를 증명한 기법이지만 수소충전소의 최적 입지를 결정하는 연구 분야에서는 아직 적용된 바가 없다. 이를 위해 본 연구에서는 개별공시지가, 수소공급지와의 거리 등 전국 고속도로 휴게소와 고속도로의 무작위 지점들의 위치와 관련된 변수들을 독립변수로 선정하여 단일 머신러닝 모형과 앙상블 모형을 적용하고 그 성과를 비교하였다. 분석 결과, 랜덤포레스트(Random Forest) 모형이 가장 우수한 성과를 보였으며, 다른 모형들 또한 우수한 분류 성능을 보여 최적 입지 문제에 대해 공간적 특성을 예비적으로 검토하는 방법론으로써 머신러닝의 적용 가능성을 확인할 수 있었다. 따라서 머신러닝 모형은 수소충전소의 최적 입지 결정 분야에서 향후 최적화 기법을 적용한 연구의 예비적 검토 방법론으로 널리 활용할 수 있을 것으로 기대된다.

Intention Classification for Retrieval of Health Questions

  • Liu, Rey-Long
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제7권1호
    • /
    • pp.101-120
    • /
    • 2017
  • Healthcare professionals have edited many health questions (HQs) and their answers for healthcare consumers on the Internet. The HQs provide both readable and reliable health information, and hence retrieval of those HQs that are relevant to a given question is essential for health education and promotion through the Internet. However, retrieval of relevant HQs needs to be based on the recognition of the intention of each HQ, which is difficult to be done by predefining syntactic and semantic rules. We thus model the intention recognition problem as a text classification problem, and develop two techniques to improve a learning-based text classifier for the problem. The two techniques improve the classifier by location-based and area-based feature weightings, respectively. Experimental results show that, the two techniques can work together to significantly improve a Support Vector Machine classifier in both the recognition of HQ intentions and the retrieval of relevant HQs.

Seamless Mobile Learning: Possibilities and Challenges Arising from the Singapore Experience

  • SO, Hyo-Jeong;KIM, Insu;LOOI, Chee-Kit
    • Educational Technology International
    • /
    • 제9권2호
    • /
    • pp.97-121
    • /
    • 2008
  • The purposes of the present study are to describe the design of mobile learning scenarios based on learning sciences theories, and to discuss implications for the future research in this area. To move beyond mere speculations about the abundant possibilities of mobile learning and to make real impact in K-12 school settings, it is critical to conduct school-based research grounded on the learning sciences theories. Towards this end, this paper describes school-based mobile learning projects conducted by a research team at the Learning Sciences Lab in Singapore, and then discusses the possibilities and challenges of mobile learning to further inform future research. Specifically, this paper explores the affordances of mobile technology, such as portability, connectivity and context-sensitivity, to design seamless learning scenarios that bridge formal and informal learning experiences. The authors present a framework for re-conceptualizing different types of learning based on physical settings and intentionality, and then describe two seamless learning scenarios, namely 3Rs and Chinatown Trail, which were implemented in one primary school in Singapore. In conclusion, the authors discuss the affordances of seamless mobile learning for enhancing one's lived experiences to build a living ecological relationship between the person and the environment, and how mobile technology can play a critical role for enabling such lived experiences.

Development of Low-Cost Vision-based Eye Tracking Algorithm for Information Augmented Interactive System

  • Park, Seo-Jeon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • 제7권1호
    • /
    • pp.11-16
    • /
    • 2020
  • Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.

자율주행을 위한 딥러닝 기반의 차선 검출 방법에 관한 연구 (A Study on the Detection Method of Lane Based on Deep Learning for Autonomous Driving)

  • 박승준;한상용;박상배;김정하
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.979-987
    • /
    • 2020
  • This study used the Deep Learning models used in previous studies, we selected the basic model. The selected model was selected as ZFNet among ZFNet, Googlenet and ResNet, and the object was detected using a ZFNet based FRCNN. In order to reduce the detection error rate of FRCNN, location of four types of objects detected inside the image was designed by SVM classifier and location-based filtering was applied. As simulation results, it showed similar performance to the lane marking classification method with conventional 경계 detection, with an average accuracy of about 88.8%. In addition, studies using the Linear-parabolic Model showed a processing speed of 165.65ms with a minimum resolution of 600 × 800, but in this study, the resolution was treated at about 33ms with an input resolution image of 1280 × 960, so it was possible to classify lane marking at a faster rate than the previous study by CNN-based End to End method.

신경회로망을 이용한 RSSI 기반 위치인식 시스템 설계 및 구현 (Design And Implementation of RSSI Based Location Recognition System Using Neural Networks)

  • 정경권;조형국;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.742-745
    • /
    • 2009
  • 본 논문에서는 신경회로망을 이용한 RSSI(Received Signal Strength Indication) 기반 위치인식 시스템을 제안하였다. 위치를 지정한 다수의 고정노드를 구성하고, 이동노드로부터 수신되는 RSSI를 측정한다. LVQ(Learning Vector Quantization) 네트워크의 학습을 위해 정해진 위치 정보를 목표값으로 하여 고정노드에서 측정된 RSSI를 입력으로 사용하여 학습을 진행한다. 실내에 고정노드를 배치하고, 실험을 통해서 삼각측량법과 위치 추적 성능을 검토하였다.

  • PDF