DOI QR코드

DOI QR Code

Measurement Technique of Indoor location Based on Markerless applicable to AR

AR에 적용 가능한 마커리스 기반의 실내 위치 측정 기법

  • Kim, Jae-Hyeong (Dept. Electronic Engineering, Hanbat National University) ;
  • Lee, Seung-Ho (Dept. Electronic Engineering, Hanbat National University)
  • Received : 2021.04.27
  • Accepted : 2021.06.07
  • Published : 2021.06.30

Abstract

In this paper, we propose a measurement technique of indoor location based on markerless applicable to AR. The proposed technique has the following originality. The first is to extract feature points and use them to generate local patches to enable faster computation by learning and using only local patches that are more useful than the surroundings without learning the entire image. Second, learning is performed through deep learning using the convolution neural network structure to improve accuracy by reducing the error rate. Third, unlike the existing feature point matching technique, it enables indoor location measurement including left and right movement. Fourth, since the indoor location is newly measured every frame, errors occurring in the front side during movement are prevented from accumulating. Therefore, it has the advantage that the error between the final arrival point and the predicted indoor location does not increase even if the moving distance increases. As a result of the experiment conducted to evaluate the time required and accuracy of the measurement technique of indoor location based on markerless applicable to AR proposed in this paper, the difference between the actual indoor location and the measured indoor location is an average of 12.8cm and a maximum of 21.2cm. As measured, the indoor location measurement accuracy was better than that of the existing IEEE paper. In addition, it was determined that it was possible to measure the user's indoor location in real time by displaying the measured result at 20 frames per second.

본 논문에서는 AR에 적용 가능한 마커리스 기반의 실내 위치 측정 기법을 제안한다. 제안한 기법은 다음과 같은 독창성을 갖는다. 첫 번째는 특징점을 추출하고 이를 이용하여 지역 패치를 생성하여 전체 이미지를 학습하지 않고 주변보다 더 유용한 지역 패치만을 학습하고 사용함으로써 더 빠른 연산이 가능하도록 한다. 두 번째는 Convolution Neural Network 구조를 사용한 딥러닝을 통해 학습을 진행하여 오차율을 줄여 정확도를 향상시킨다. 세 번째는 기존의 특징점 매칭 기법과는 다르게 좌우 이동을 포함한 실내 위치 측정이 가능하도록 한다. 네 번째는 매 프레임마다 새롭게 실내 위치를 측정하기 때문에 이동 중 앞쪽에서 발생한 오차가 누적되어 발생되는 것을 방지한다. 따라서 이동 거리가 길어져도 최종 도착점과 예측 실내 위치 간의 오차가 증가하지 않는다는 장점을 갖는다. 본 논문에서 제안하는 AR에 적용 가능한 마커리스 기반의 실내 위치 측정 기법의 소요시간과 정확도를 평가하기 위해 시행한 실험결과, 실제 실내 위치와 측정된 실내 위치의 차이가 평균 12.8cm, 최대 21.2cm로 측정되어서, 기존 IEEE 논문의 결과보다 우수한 실내 위치 측정 정확도를 나타내었다. 또한, 초당 20프레임으로 측정된 결과를 나타내어서 실시간으로 사용자의 실내 위치를 측정하는 것이 가능하다고 판단되었다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korean government (MSIT) (NRF-2019R1F1A1063984).

References

  1. Miyashita, Tsutomu, et al. "An augmented reality museum guide," 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality. IEEE, 2008. DOI: 10.1109/ISMAR.2008.4637334
  2. M. L. Yuan, S. K. Ong and A. Y. C. Nee, "Registration using natural features for augmented reality systems," in IEEE Transactions on Visualization and Computer Graphics, vol.12, no.4, pp.569-580, 2006. DOI: 10.1109/TVCG.2006.79
  3. X. Yang, Z. Liu, W. Nie, W. He and Q. Pu, "AP Optimization for Wi-Fi Indoor Positioning-Based on RSS Feature Fuzzy Mapping and Clustering," in IEEE Access, vol.8, pp.153599-153609, 2020. DOI: 10.1109/ACCESS.2020.3018147
  4. Jae-Hyeong Kim, Seung-Ho Lee. "Intelligent face recognition and tracking system to distribute GPU resources using CUDA," Journal of IKEEE, vol.22, no.2, 281-288, 2018. DOI: 10.7471/ikeee.2018.22.2.281
  5. Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation strategies from data," Proceedings of the IEEE conference on computer vision and pattern recognition. 2019. DOI: 10.1109/CVPR.2019.00020
  6. Viswanathan, Deepak Geetha. "Features from accelerated segment test (fast)," Proceedings of the 10th workshop on Image Analysis for Multimedia Interactive Services, 2009.
  7. Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift," arXiv preprint arXiv:1502.03167 (2015). DOI: 10.5555/3045118.3045167
  8. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning," nature, Vol.521, pp.436-444, 2015. DOI: 10.1038/nature14539.