• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.033 seconds

Real time crack detection using mountable comparative vacuum monitoring sensors

  • Roach, D.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.317-328
    • /
    • 2009
  • Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures.

A numerical study on vibration-based interface debonding detection of CFST columns using an effective wavelet-based feature extraction technique

  • Majid Gholhaki;Borhan Mirzaei;Mohtasham Khanahmadi;Gholamreza Ghodrati Amiri;Omid Rezaifar
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.45-59
    • /
    • 2024
  • This paper aims to investigate the impact of interfacial debonding on modal dynamic properties such as frequencies and vibration mode shapes. Furthermore, it seeks to identify the specific locations of debonding in rectangular concrete-filled steel tubular (CFST) columns during the subsequent stage of the study. In this study, debonding is defined as a reduction in the elasticity modulus of concrete by a depth of 3 mm at the connection point with the steel tube. Debonding leads to a lack of correlation between primary and secondary shapes of vibration modes and causes a reduction in the natural frequency in all modes. However, directly comparing changes in vibration responses does not allow for the identification of debonding locations. In this study, a novel irregularity detection index (IDI) is proposed based on modal signal processing via the 2D wavelet transform. The suggested index effectively reveals relative irregularity peaks in the form of elevations at the debonding locations. As the severity of damage increases at a specific debonding location, the relative irregularity peaks would increase only at that specific point; in other words, the detection or non-detection of a debonding location using IDI has minimal effects on the identification of other debonding locations.

A TOA Shortest Distance Algorithm for Estimating Mobile Location (모바일 위치추정을 위한 TOA 최단거리 알고리즘)

  • Pradhan, Sajina;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1883-1890
    • /
    • 2013
  • Location detection technology (LDT) is one of the core techniques for location based service (LBS) in wireless communication for improving resource management and quality of services. The location of a mobile station (MS) is estimated using the time of arrival (TOA) technique based on three circles with centers corresponding to coordinates of three base stations (BSs) and radius corresponding to distances between MS and BSs. For accurately estimating the location of MS, three circles should meet at a point for the trilateration method, but they generally do not meet a point because the radius is increased depending on the number of time delay for estimating the distance between MS and BS and the carrier frequency. The increased three circles intersect at six points and the three intersection points among them should be generally placed close to coordinate of the location for the specific MS. In this paper, we propose the shortest distance algorithm for TOA trilateration method, to select three interior intersection points from entire six points. The proposed approach selects three intersection points with the shortest distances between coordinates of MS and intersection points and determines the averaged coordinate of the selected three points, as the location of the specific MS. We demonstrate the performance of the proposed algorithm using a typical computer simulation example.

Location Estimation Method of Steam Leak in Pipelines Using Leakage Area Analysis (누설영역 분석을 이용한 배관 증기누설 위치 추정 방법)

  • Kim, Se-Oh;Jeon, Hyeong-Seop;Son, Ki-Sung;Park, Jong Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.384-390
    • /
    • 2016
  • It is important to have a pipeline leak-detection system that determines the presence of a leak and quickly identifies its location. Current leak detection methods use a acoustic emission sensors, microphone arrays, and camera images. Recently, many researchers have been focusing on using cameras for detecting leaks. The advantage of this method is that it can survey a wide area and monitor a pipeline over a long distance. However, conventional methods using camera monitoring are unable to target an exact leak location. In this paper, we propose a method of detecting leak locations using leak-detection results combined with multi-frame analysis. The proposed method is verified by experiment.

System and method for detecting gas using smart-phone (스마트폰을 이용한 가스검출시스템 및 검출 방법연구)

  • Bang, Yong-Ki;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.129-137
    • /
    • 2015
  • This study is in regard to the gas detection system and gas detection method utilizing smart phone. This study includes; 1) the sensor module attached to the smart phone to detect and measure flammable gas or toxic gas; and 2) gas detection APP which is installed inside the smart phone and recognizes the user information and location information automatically by reading RFID tag indicating the user or the location to detect gas through the contact area where RFID and blue tooth reader is installed inside of the above mentioned smart phone, and then measures the combustible gas or toxic gas by operating above mentioned sensor module and obtains the data thus measured, and above mentioned smart phone is characterized by its transmission of the above mentioned user information, location information and measured data which are obtained by above mentioned gas detecting APP to operation server via communication network. With this, reliability for the location detecting gas by the user, the result of the measurement, etc. can be secured. Furthermore, this provides the effect of preventing artificial manipulation at the time of input which is associated with the identification of the user to be measured by utilizing removable sensor module and application or the mistake resulted from wrong input by the user. In addition, by transmitting the measured data from the sensor module carrying out gas detection to operation server, this provides the effect of making it possible to process the data thus collected to a specialized data for combustible gas or toxic gas.

Fault Locator using GPS Time-synchronized Phasor for Transmission Line (송전선로의 동기페이저를 이용한 고장점 표정장치)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.47-52
    • /
    • 2016
  • Fault location identification in the transmission line is an essential part of quick service restoration for maintaining a stable in power system. The application of digital schemes to protection IEDs has led to the development of digital fault locators. Normally, the impedance measurement had been used to for the location detection of transmission line faults. It is well known that the most accurate fault location scheme uses two-ended measurements. This paper deals with the complete design of a fault locator using GPS time-synchronized phasor for transmission line fault detection. The fault location algorithm uses the transmitted relaying signals from the two-ended terminal. The fault locator hardware consists of a Main Processor Unit, Analog Digital Processor Unit, Signal Interface Unit, and Power module. In this paper, sample real-time test cases using COMTRADE format of Omicron apparatus are included. We can see that the implemented fault locator identified all the test faults.

Design and Construction of Test Field for Low Voltage Under Cable Fault Location Detection (저압 지중케이블 고장 위치 검출 실증 시험장 설계 및 구축)

  • Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6666-6672
    • /
    • 2015
  • Various reflectometry methods to locate power cable fault have been studied. But, most related studies has been verifying by simulation and laboratory test and study in conditions similar with real cable fault filed was not performed due to the absence of cable fault test field. Therefore, this paper design and construct test field for the standardized performance test and the operating education of cable fault location equipments. In the constructed test, open, short, half open and poor contact fault at 100m, 200m location of cable was produced and 1km cable role was installed for maximum distance measurement test. The test field will be used in the development and standardization of cable fault location technology, and te performance evaluation and certificate test of the related equipments.

Structural damage identification of plates based on modal data using 2D discrete wavelet transform

  • Bagheri, A.;Ghodrati Amiri, G.;Khorasani, M.;Bakhshi, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.13-28
    • /
    • 2011
  • An effective method for detection linear flaws in plate structures via two-dimensional discrete wavelet transform is proposed in this study. The proposed method was applied to a four-fixed supported rectangular plate containing damage with arbitrary length, depth and location. Numerical results identifying the damage location are compared with the actual results to demonstrate the effectiveness of the proposed method. Also, a wavelet-based method presented for de-noising of mode shape of plate. Finally, the performance of the proposed method for de-noising and damage identification was verified using experimental data. Comparison between the location detected by the proposed method, and the plate's actual damage location revealed that the methodology can be used as an accessible and effective technique for damage identification of actual plate structures.

Estimation of the Sensor Location and the Step for Personal Navigation System (개인 항법 시스템을 위한 센서 위치와 보폭 추정 알고리즘)

  • Kim, Tae-Un;Lee, Ho-Won;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2058-2065
    • /
    • 2010
  • This paper presents the sensor location and step estimation algorithm for personal navigation system (PNS). PNS has the disadvantage in that the position of the sensor must be fixed on a human body. Three-axis acceleration sensor is used to solve the disadvantage and to consider the real situation. We simplify the measurement data by using the band pass filter, witch It has the advantage in the detection of characteristic point. Through the detected characteristic points, it is possible to setup the parameter for the pattern detection. Depending on the sensor location, the parameters have the different type of noise covariance. Particularly, when the position of the sensor is changed, the impulse noise shows up. Considering the noise, we apply the recursive least square algorithm using the variable forgetting factors, which can classify the sensor location based on the estimated parameters. We performed the experiment for the verification of the proposed algorithm in the various environments. Through the experimental results, the effectiveness of the proposed method is verified.

PD Source Detection of Oil Transformer Using Three-dimensional Construction (3차원 해석에 의한 유입변압기 PD발생점 탐지)

  • Yoon, Chul-Sub;Choi, Gil-Soo;Lee, Eun-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1036-1038
    • /
    • 1998
  • The while, PD source detection in the oil TR was the level of the planar source detection. and it is to respected scientific research. The planar source detection technique had limits which have difficulties finding out the point of deterioration generation. In this study, our purpose is a development of PD source detection technique with Three-Dimensional using a principle and a technique of the planar source location.

  • PDF