• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.024 seconds

Face Detection Based on Distribution Map (분포맵에 기반한 얼굴 영역 검출)

  • Cho Han-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Recently face detection has actively been researched due to its wide range of applications, such as personal identification and security systems. In this paper, a new face detection method based on the distribution map is proposed. Face-like regions are first extracted by applying the skin color map with the frequency to a color image and then, possible eye regions are determined by using the pupil color distribution map within the face-like regions. This enables the reduction of space for finding facial features. Eye candidates are detected by means of a template matching method using weighted window, which utilizes the correlation values of the luminance component and chrominance components as feature vectors. Finally, a cost function for mouth detection and location information between the facial features are applied to each pair of the eye candidates for face detection. Experimental results show that the proposed method can achieve a high performance.

  • PDF

Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

  • Gomathy, V.;Selvaperumal, S.
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1097-1109
    • /
    • 2016
  • Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

A model experiment of damage detection for offshore jacket platforms based on partial measurement

  • Shi, Xiang;Li, Hua-Jun;Yang, Yong-Chun;Gong, Chen
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.311-325
    • /
    • 2008
  • Noting that damage occurrence of offshore jacket platforms is concentrated in two structural regions that are in the vicinity of still water surface and close to the seabed, a damage detection method by using only partial measurement of vibration in a suspect region was presented in this paper, which can not only locate damaged members but also evaluate damage severities. Then employing an experiment platform model under white-noise ground excitation by shaking table and using modal parameters of the first three modes identified by a scalar-type ARMA method on undamaged and damaged structures, the feasibility of the damage detection method was discussed. Modal parameters from eigenvalue analysis on the structural FEM model were also used to help the discussions. It is demonstrated that the damage detection algorithm is feasible on damage location and severity evaluation for broken slanted braces and it is robust against the errors of baseline FEM model to real structure when the principal errors is formed by difference of modal frequencies. It is also found that Z-value changes of modal shapes also play a role in the precise detection of damage.

A Study on Fault Detection for Photovoltaic Power Modules using Statistical Comparison Scheme (통계학적 비교 기법을 이용한 태양광 모듈의 고장 유무 검출에 관한 연구)

  • Cho, Hyun Cheol;Jung, Young Jin;Lee, Gwan Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.89-93
    • /
    • 2013
  • In recent years, many investigations about photovoltaic power systems have been significantly carried out in the fields of renewable power energy. Such research area generally includes developments of highly efficient solar cells, advanced power conversion systems, and smart monitoring systems. A generic objective of fault detection and diagnosis techniques is to timely recognize unexpected faulty of dynamic systems so that economic demage occurred by such faulty is decreased by means of engineering techniques. This paper presents a novel fault detection approach for photovoltaic power arrays which are electrically connected in series and parallels. In the proposed fault detection scheme, we first measure all of photovoltaic modules located in each array by using electronic sense systems and then compare each measurement in turn to detect location of fault module through statistic computation algorithm. We accomplish real-time experiments to demonstrate our proposed fault detection methodology by using a test-bed system including two 20 watt photovoltaic modules.

Accurate Pig Detection for Video Monitoring Environment (비디오 모니터링 환경에서 정확한 돼지 탐지)

  • Ahn, Hanse;Son, Seungwook;Yu, Seunghyun;Suh, Yooil;Son, Junhyung;Lee, Sejun;Chung, Yongwha;Park, Daihee
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.890-902
    • /
    • 2021
  • Although the object detection accuracy with still images has been significantly improved with the advance of deep learning techniques, the object detection problem with video data remains as a challenging problem due to the real-time requirement and accuracy drop with occlusion. In this research, we propose a method in pig detection for video monitoring environment. First, we determine a motion, from a video data obtained from a tilted-down-view camera, based on the average size of each pig at each location with the training data, and extract key frames based on the motion information. For each key frame, we then apply YOLO, which is known to have a superior trade-off between accuracy and execution speed among many deep learning-based object detectors, in order to get pig's bounding boxes. Finally, we merge the bounding boxes between consecutive key frames in order to reduce false positive and negative cases. Based on the experiment results with a video data set obtained from a pig farm, we confirmed that the pigs could be detected with an accuracy of 97% at a processing speed of 37fps.

Remote Distance Measurement from a Single Image by Automatic Detection and Perspective Correction

  • Layek, Md Abu;Chung, TaeChoong;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3981-4004
    • /
    • 2019
  • This paper proposes a novel method for locating objects in real space from a single remote image and measuring actual distances between them by automatic detection and perspective transformation. The dimensions of the real space are known in advance. First, the corner points of the interested region are detected from an image using deep learning. Then, based on the corner points, the region of interest (ROI) is extracted and made proportional to real space by applying warp-perspective transformation. Finally, the objects are detected and mapped to the real-world location. Removing distortion from the image using camera calibration improves the accuracy in most of the cases. The deep learning framework Darknet is used for detection, and necessary modifications are made to integrate perspective transformation, camera calibration, un-distortion, etc. Experiments are performed with two types of cameras, one with barrel and the other with pincushion distortions. The results show that the difference between calculated distances and measured on real space with measurement tapes are very small; approximately 1 cm on an average. Furthermore, automatic corner detection allows the system to be used with any type of camera that has a fixed pose or in motion; using more points significantly enhances the accuracy of real-world mapping even without camera calibration. Perspective transformation also increases the object detection efficiency by making unified sizes of all objects.

A two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.593-607
    • /
    • 2022
  • To solve the problem of detecting structural damage, a two-stage method using the Kalman filter and Particle Swarm Optimization (PSO) is proposed. In this method, the first PSO population is enhanced using the Kalman filter method based on dynamic responses. Due to noise in the sensor responses and errors in the damage detection process, the accuracy of the damage detection process is reduced. This method proposes a novel approach for solve this problem by integrating the Kalman filter and sensitivity analysis. In the Kalman filter, an approximate damage equation is considered as the equation of state and the damage detection equation based on sensitivity analysis is considered as the observation equation. The first population of PSO are the random damage scenarios. These damage scenarios are estimated using a step of the Kalman filter. The results of this stage are then used to detect the exact location of the damage and its severity with the PSO algorithm. The efficiency of the proposed method is investigated using three numerical examples: a 31-element planer truss, a 52-element space dome, and a 56-element space truss. In these examples, damage is detected for several scenarios in two states: using the no noise responses and using the noisy responses. The results show that the precision and efficiency of the proposed method are appropriate in structural damage detection.

An Energy-Efficient Location Update Scheme for Mobile Sinks in Continuous Object Detection Using Wireless Sensor Networks (무선 센서 망을 이용한 연속개체 탐지에서 이동싱크의 에너지 효율적인 위치갱신 방안)

  • Kim, Cheonyong;Cho, Hyunchong;Kim, Sangdae;Kim, Sang-Ha
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.967-973
    • /
    • 2014
  • A continuous object is large phenomenon diffusing continuously. Therefore, a large number of sources is a major problem in researches for continuous object. Existing studies for continuous object detecting focus on reducing communication cost generated by the sources. But, they only deal with the static sink located in fixed position. In this paper, we propose the location update scheme for mobile sinks in continuous object detecting. Generally, to receive data, a mobile sink should notice its current location to sources. Previous studies for location update of mobile sinks consider individual object. So they need a lot of energy for location update when a mobile sink notices its current location toward many sources of a continuous object independently. Proposed scheme exploits regional locality of the sources involved one continuous object. The regional locality makes the location update of mobile sinks efficient. Our simulation results show that the proposed scheme superior to existing schemes in terms of energy efficiency.

GIS Application for 1-1-9 Caller Location Information System (GIS를 이용한 신고자 위치표시 시스템 개발)

  • Hahm, Chang-Hahk;Jeong, Jae-Hu;Ryu, Joong-Hi;Kim, Eung-Nam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.97-103
    • /
    • 2000
  • The main purpose of 1-1-9 Caller Location Information System is to identify and display the precise location of emergency incidents such as natural or man - made fires, medical emergencies and accidents. The state - of- the - art technologies such as Am (Automatic Number Identification), GIS(Geographical Information System) and GPS (Global Positioning System) were applied and integrated in the system for efficient and effective location identification. It displays a radius of 25M, 50M and 100M on the map after location identification. The system can also provide the shortest path to an incident location from a fire station or a fire engine. In case of a fire breakout in or near a building, the attribute information of the building, called a building attribute card, is displayed along with the map location. The system then matches the information with the fire situation and sends an alert to a responsible fire station by phone or fax in order to help promptly react to the problem. An attribute card includes the critical information of a premise such as building's location, number of stories, floor plans, capacity, construction history, indoor fire detection and Prevention facilities, etc.

  • PDF

A Study on the Improvement of Color Detection Performance of Unmanned Salt Collection Vehicles Using an Image Processing Algorithm (이미지 처리 알고리즘을 이용한 무인 천일염 포집장치의 색상 검출 성능 향상에 관한 연구)

  • Kim, Seon-Deok;Ahn, Byong-Won;Park, Kyung-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1054-1062
    • /
    • 2022
  • The population of Korea's solar salt-producing regions is rapidly aging, resulting in a decrease in the number of productive workers. In solar salt production, salt collection is the most labor-intensive operation because existing salt collection vehicles require human operators. Therefore, we intend to develop an unmanned solar salt collection vehicle to reduce manpower requirements. The unmanned solar salt collection vehicle is designed to identify the salt collection status and location in the salt plate via color detection, the color detection performance is a crucial consideration. Therefore, an image processing algorithm was developed to improve color detection performance. The algorithm generates an around-view image by using resizing, rotation, and perspective transformation of the input image, set the RoI to transform only the corresponding area to the HSV color model, and detects the color area through an AND operation. The detected color area was expanded and noise removed using morphological operations, and the area of the detection region was calculated using contour and image moment. The calculated area is compared with the set area to determine the location case of the collection vehicle within the salt plate. The performance was evaluated by comparing the calculated area of the final detected color to which the algorithm was applied and the area of the detected color in each step of the algorithm. It was confirmed that the color detection performance is improved by at least 25-99% for salt detection, at least 44-68% for red color, and an average of 7% for blue and an average of 15% for green. The proposed approach is well-suited to the operation of unmanned solar salt collection vehicles.