• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.031 seconds

A Study on Integrated Fire Alarm System for Safe Urban Transit (안전한 도시철도를 위한 통합 화재 경보 시스템 구축의 연구)

  • Chang, Il-Sik;Ahn, Tae-Ki;Jeon, Ji-Hye;Cho, Byung-Mok;Park, Goo-Man
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.768-773
    • /
    • 2011
  • Today's urban transit system is regarded as the important public transportation service which saves passengers' time and provides the safety. Many researches focus on the rapid and protective responses that minimize the losses when dangerous situation occurs. In this paper we proposed the early fire detection and corresponding rapid response method in urban transit system by combining automatic fire detection for video input and the sensor system. The fire detection method consists of two parts, spark detection and smoke detection. At the spark detection, the RGB color of input video is converted into HSV color and the frame difference is obtained in temporal direction. The region with high R values is considered as fire region candidate and stepwise fire detection rule is applied to calculate its size. At the smoke detection stage, we used the smoke sensor network to secure the credibility of spark detection. The proposed system can be implemented at low prices. In the future work, we would improve the detection algorithm and the accuracy of sensor location in the network.

  • PDF

An Eye Location based Head Posture Recognition Method and Its Application in Mouse Operation

  • Chen, Zhe;Yang, Bingbing;Yin, Fuliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1087-1104
    • /
    • 2015
  • An eye location based head posture recognition method is proposed in this paper. First, face is detected using skin color method, and eyebrow and eye areas are located based on gray gradient in face. Next, pupil circles are determined using edge detection circle method. Finally, head postures are recognized based on eye location information. The proposed method has high recognition precision and is robust for facial expressions and different head postures, and can be used in mouse operation. The experimental results reveal the validity of proposed method.

Fault Location in Combined Transmission Systems Using Wavelet Transform (웨이브렛 변환을 이용한 혼합송전계통에서의 Fault Location)

  • Jung, Chae-Kyun;Hong, Dong-Suk;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.226-229
    • /
    • 2001
  • The combined transmission lines with the underground power cables are continuously expanded in power systems. So the fault of combined transmission line is increased every year as the complication of underground transmission line. In this paper. traveling wave theory and DWT wavelet transform are used for fast and accurate detection of fault location at the combined transmission line. Traveling wave travels to each bus like surge and repeats reflection and transmission till transient signal is completely disappeared. When fault is occurred on overhead and underground tine, the fault location detecting algorithm was performed with using continuous peak value time-delay of traveling wave reflected from A bus.

  • PDF

Identifying Unusual Days

  • Kim, Min-Kyong;Kotz, David
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.1
    • /
    • pp.71-84
    • /
    • 2011
  • Pervasive applications such as digital memories or patient monitors collect a vast amount of data. One key challenge in these systems is how to extract interesting or unusual information. Because users cannot anticipate their future interests in the data when the data is stored, it is hard to provide appropriate indexes. As location-tracking technologies, such as global positioning system, have become ubiquitous, digital cameras or other pervasive systems record location information along with the data. In this paper, we present an automatic approach to identify unusual data using location information. Given the location information, our system identifies unusual days, that is, days with unusual mobility patterns. We evaluated our detection system using a real wireless trace, collected at wireless access points, and demonstrated its capabilities. Using our system, we were able to identify days when mobility patterns changed and differentiate days when a user followed a regular pattern from the rest. We also discovered general mobility characteristics. For example, most users had one or more repeating mobility patterns, and repeating mobility patterns did not depend on certain days of the week, except that weekends were different from weekdays.

Efficient 3D Scene Labeling using Object Detectors & Location Prior Maps (물체 탐지기와 위치 사전 확률 지도를 이용한 효율적인 3차원 장면 레이블링)

  • Kim, Joo-Hee;Kim, In-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.996-1002
    • /
    • 2015
  • In this paper, we present an effective system for the 3D scene labeling of objects from RGB-D videos. Our system uses a Markov Random Field (MRF) over a voxel representation of the 3D scene. In order to estimate the correct label of each voxel, the probabilistic graphical model integrates both scores from sliding window-based object detectors and also from object location prior maps. Both the object detectors and the location prior maps are pre-trained from manually labeled RGB-D images. Additionally, the model integrates the scores from considering the geometric constraints between adjacent voxels in the label estimation. We show excellent experimental results for the RGB-D Scenes Dataset built by the University of Washington, in which each indoor scene contains tabletop objects.

Channelwise Multipath Detection for General GPS Receivers (일반적인 GPS 수신기를 위한 채널별 다중경로오차 검출 기법)

  • Lee, Hyung-Keun;Lee, Jang-Gyu;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.818-826
    • /
    • 2002
  • Since multipath phenomenon frequently occurs when a Global Positioning System receiver is placed in urban area crowded with large buildings, efficient mitigation of multipath effects is necessary to resolve. In this paper, we propose a new multipath detection technique that is useful in real-time positioning with a general Global Positioning System receiver. The proposed technique is based on a channelwise multipath test statistic that efficiently indicates the degree of fluctuations induced by multipath error. The proposed multipath test statistic is operationally advantageous because it does not require any specialized hardware nor any pre-computation of receiver position, it is directly related to standard $\chi$$^2$-distributions, and it can adjust the detection resolution by increasing the number of successive measurements. Simulation and experiment results verify the performance of the proposed multipath detection technique.

An Anomalous Behavior Detection Method Using System Call Sequences for Distributed Applications

  • Ma, Chuan;Shen, Limin;Wang, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.659-679
    • /
    • 2015
  • Distributed applications are composed of multiple nodes, which exchange information with individual nodes through message passing. Compared with traditional applications, distributed applications have more complex behavior patterns because a large number of interactions and concurrent behaviors exist among their distributed nodes. Thus, it is difficult to detect anomalous behaviors and determine the location and scope of abnormal nodes, and some attacks and misuse cannot be detected. To address this problem, we introduce a method for detecting anomalous behaviors based on process algebra. We specify the architecture of the behavior detection model and the detection algorithm. The anomalous behavior detection and analysis demonstrate that our method is a good discriminator between normal and anomalous behavior characteristics of distributed applications. Performance evaluation shows that the proposed method enhances efficiency without security degradation.

IMAGE PROCESSING TECHNIQUES FOR LANE-RELATED INFORMATION EXTRACTION AND MULTI-VEHICLE DETECTION IN INTELLIGENT HIGHWAY VEHICLES

  • Wu, Y.J.;Lian, F.L.;Huang, C.P.;Chang, T.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.513-520
    • /
    • 2007
  • In this paper, we propose an approach to identify the driving environment for intelligent highway vehicles by means of image processing and computer vision techniques. The proposed approach mainly consists of two consecutive computational steps. The first step is the lane marking detection, which is used to identify the location of the host vehicle and road geometry. In this step, related standard image processing techniques are adapted for lane-related information. In the second step, by using the output from the first step, a four-stage algorithm for vehicle detection is proposed to provide information on the relative position and speed between the host vehicle and each preceding vehicle. The proposed approach has been validated in several real-world scenarios. Herein, experimental results indicate low false alarm and low false dismissal and have demonstrated the robustness of the proposed detection approach.

Real-Time Traffic Sign Detection Using K-means Clustering and Neural Network (K-means Clustering 기법과 신경망을 이용한 실시간 교통 표지판의 위치 인식)

  • Park, Jung-Guk;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.491-493
    • /
    • 2011
  • Traffic sign detection is the domain of automatic driver assistant systems. There are literatures for traffic sign detection using color information, however, color-based method contains ill-posed condition and to extract the region of interest is difficult. In our work, we propose a method for traffic sign detection using k-means clustering method, back-propagation neural network, and projection histogram features that yields the robustness for ill-posed condition. Using the color information of traffic signs enables k-means algorithm to cluster the region of interest for the detection efficiently. In each step of clustering, a cluster is verified by the neural network so that the cluster exactly represents the location of a traffic sign. Proposed method is practical, and yields robustness for the unexpected region of interest or for multiple detections.

Target Detection and Navigation System for a mobile Robot

  • Kim, Il-Wan;Kwon, Ho-Sang;Kim, Young-Joong;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2337-2341
    • /
    • 2005
  • This paper presents the target detection method using Support Vector Machines(SVMs) and the navigation system using behavior-based fuzzy controller. SVM is a machine-learning method based on the principle of structural risk minimization, which performs well when applied to data outside the training set. We formulate detection of target objects as a supervised-learning problem and apply SVM to detect at each location in the image whether a target object is present or not. The behavior-based fuzzy controller is implemented as an individual priority behavior: the highest level behavior is target-seeking, the middle level behavior is obstacle-avoidance, the lowest level is an emergency behavior. We have implemented and tested the proposed method in our mobile robot "Pioneer2-AT". Comparing with a neural-network based detection method, a SVM illustrate the excellence of the proposed method.

  • PDF