• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.027 seconds

Counting and Localizing Occupants using IR-UWB Radar and Machine Learning

  • Ji, Geonwoo;Lee, Changwon;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • Localization systems can be used with various circumstances like measuring population movement and rescue technology, even in security technology (like infiltration detection system). Vision sensors such as camera often used for localization is susceptible with light and temperature, and can cause invasion of privacy. In this paper, we used ultra-wideband radar technology (which is not limited by aforementioned problems) and machine learning techniques to measure the number and location of occupants in other indoor spaces behind the wall. We used four different algorithms and compared their results, including extremely randomized tree for four different situations; detect the number of occupants in a classroom, split the classroom into 28 locations and check the position of occupant, select one out of the 28 locations, divide it into 16 fine-grained locations, and check the position of occupant, and checking the positions of two occupants (existing in different locations). Overall, four algorithms showed good results and we verified that detecting the number and location of occupants are possible with high accuracy using machine learning. Also we have considered the possibility of service expansion using the oneM2M standard platform and expect to develop more service and products if this technology is used in various fields.

A Study on the Smart Elderly Support System in response to the New Virus Disease (신종 바이러스에 대응하는 스마트 고령자지원 시스템의 연구)

  • Myeon-Gyun Cho
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.175-185
    • /
    • 2023
  • Recently, novel viral infections such as COVID-19 have spread and pose a serious public health problem. In particular, these diseases have a fatal effect on the elderly, threatening life and causing serious social and economic losses. Accordingly, applications such as telemedicine, healthcare, and disease prevention using the Internet of Things (IoT) and artificial intelligence (AI) have been introduced in many industries to improve disease detection, monitoring, and quarantine performance. However, since existing technologies are not applied quickly and comprehensively to the sudden emergence of infectious diseases, they have not been able to prevent large-scale infection and the nationwide spread of infectious diseases in society. Therefore, in this paper, we try to predict the spread of infection by collecting various infection information with regional limitations through a virus disease information collector and performing AI analysis and severity matching through an AI broker. Finally, through the Korea Centers for Disease Control and Prevention, danger alerts are issued to the elderly, messages are sent to block the spread, and information on evacuation from infected areas is quickly provided. A realistic elderly support system compares the location information of the elderly with the information of the infected area and provides an intuitive danger area (infected area) avoidance function with an augmented reality-based smartphone application. When the elderly visit an infected area is confirmed, quarantine management services are provided automatically. In the future, the proposed system can be used as a method of preventing a crushing accident due to sudden crowd concentration in advance by identifying the location-based user density.

An Approach Using LSTM Model to Forecasting Customer Congestion Based on Indoor Human Tracking (실내 사람 위치 추적 기반 LSTM 모델을 이용한 고객 혼잡 예측 연구)

  • Hee-ju Chae;Kyeong-heon Kwak;Da-yeon Lee;Eunkyung Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • In this detailed and comprehensive study, our primary focus has been placed on accurately gauging the number of visitors and their real-time locations in commercial spaces. Particularly, in a real cafe, using security cameras, we have developed a system that can offer live updates on available seating and predict future congestion levels. By employing YOLO, a real-time object detection and tracking algorithm, the number of visitors and their respective locations in real-time are also monitored. This information is then used to update a cafe's indoor map, thereby enabling users to easily identify available seating. Moreover, we developed a model that predicts the congestion of a cafe in real time. The sophisticated model, designed to learn visitor count and movement patterns over diverse time intervals, is based on Long Short Term Memory (LSTM) to address the vanishing gradient problem and Sequence-to-Sequence (Seq2Seq) for processing data with temporal relationships. This innovative system has the potential to significantly improve cafe management efficiency and customer satisfaction by delivering reliable predictions of cafe congestion to all users. Our groundbreaking research not only demonstrates the effectiveness and utility of indoor location tracking technology implemented through security cameras but also proposes potential applications in other commercial spaces.

Development of Tree Detection Methods for Estimating LULUCF Settlement Greenhouse Gas Inventories Using Vegetation Indices (식생지수를 활용한 LULUCF 정주지 온실가스 인벤토리 산정을 위한 수목탐지 방법 개발)

  • Joon-Woo Lee;Yu-Han Han;Jeong-Taek Lee;Jin-Hyuk Park;Geun-Han Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1721-1730
    • /
    • 2023
  • As awareness of the problem of global warming emerges around the world, the role of carbon sinks in settlement is increasingly emphasized to achieve carbon neutrality in urban areas. In order to manage carbon sinks in settlement, it is necessary to identify the current status of carbon sinks. Identifying the status of carbon sinks requires a lot of manpower and time and a corresponding budget. Therefore, in this study, a map predicting the location of trees was created using already established tree location information and Sentinel-2 satellite images targeting Seoul. To this end, after constructing a tree presence/absence dataset, structured data was generated using 16 types of vegetation indices information constructed from satellite images. After learning this by applying the Extreme Gradient Boosting (XGBoost) model, a tree prediction map was created. Afterward, the correlation between independent and dependent variables was investigated in model learning using the Shapely value of Shapley Additive exPlanations(SHAP). A comparative analysis was performed between maps produced for local parts of Seoul and sub-categorized land cover maps. In the case of the tree prediction model produced in this study, it was confirmed that even hard-to-detect street trees around the main street were predicted as trees.

A Study on the Methodology for Analyzing the Effectiveness of Traffic Safety Facilities Using Drone Images (드론 영상기반 교통안전시설 효과분석 방법론 연구)

  • Yong Woo Park;Yang Jung Kim;Shin Hyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.74-91
    • /
    • 2023
  • Several that analyzed the effectiveness of traffic safety facilities a method of comparing changes in the number of accidents, accident severity, speed through traffic accident data before and after installation or speed data collected from vehicle detection systems (VDS). , when traffic accident data is used, it takes a long time to collect because must be collected for at least one year before and after installation. , the road environment may change during this period, such as the addition of other traffic safety facilities in addition to the facilities to be analyzed. , the location of the VDSs for speed data is often different from the location where analysis is required, and there is a problem in that the investigators are exposed to the risk of traffic accident during on-site investigation. Therefore, this study a case study by establishing a methodology to determine effectiveness video images with a drone, extracting data using a program, and comparing vehicle driving speeds before and after speed reduction facilities. Vehicle speed surveys using drones are much safer than observational surveys conducted on highways and have the advantage of tracking speed changes along the vehicle, it is expected that they will be used for various traffic surveys in the future.

Leakage noise detection using a multi-channel sensor module based on acoustic intensity (음향 인텐시티 기반 다채널 센서 모듈을 이용한 배관 누설 소음 탐지)

  • Hyeonbin Ryoo;Jung-Han Woo;Yun-Ho Seo;Sang-Ryul Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.414-421
    • /
    • 2024
  • In this paper, we design and verify a system that can detect piping leakage noise in an environment with significant reverberation and reflection using a multi-channel acoustic sensor module as a technology to prevent major plant accidents caused by leakage. Four-channel microphones arranged in a tetrahedron are designed as a single sensor module to measure three-dimensional sound intensity vectors. In an environment with large effects of reverberation and reflection, the measurement error of each sensor module increases on average, so after placing multiple sensor modules in the field, measurement results showing locations with large errors due to effects such as reflection are excluded. Using the intersection between three-dimensional vectors obtained from several pairs of sensor modules, the coordinates where the sound source is located are estimated, and outliers (e.g., positions estimated to be outside the site, positions estimated to be far from the average position) are detected and excluded among the points. For achieving aforementioned goal, an excluding algorithm by deciding the outliers among the estimated positions was proposed. By visualizing the estimated location coordinates of the leakage sound on the site drawing within 1 second, we construct and verify a system that can detect the location of the leakage sound in real time and enable immediate response. This study is expected to contribute to improving accident response capabilities and ensuring safety in large plants.

Development and Application of a Scenario Analysis System for CBRN Hazard Prediction (화생방 오염확산 시나리오 분석 시스템 구축 및 활용)

  • Byungheon Lee;Jiyun Seo;Hyunwoo Nam
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.3
    • /
    • pp.13-26
    • /
    • 2024
  • The CBRN(Chemical, Biological, Radiological, and Nuclear) hazard prediction model is a system that supports commanders in making better decisions by creating contamination distribution and damage prediction areas based on the weapons used, terrain, and weather information in the events of biochemical and radiological accidents. NBC_RAMS(Nuclear, Biological and Chemical Reporting And Modeling S/W System) developed by ADD (Agency for Defense Development) is used not only supporting for decision making plan for various military operations and exercises but also for post analyzing CBRN related events. With the NBC_RAMS's core engine, we introduced a CBR hazard assessment scenario analysis system that can generate contaminant distribution prediction results reflecting various CBR scenarios, and described how to apply it in specific purposes in terms of input information, meteorological data, land data with land coverage and DEM, and building data with pologon form. As a practical use case, a technology development case is addressed that tracks the origin location of contaminant source with artificial intelligence and a technology that selects the optimal location of a CBR detection sensor with score data by analyzing large amounts of data generated using the CBRN scenario analysis system. Through this system, it is possible to generate AI-specialized CBRN related to training and analysis data and support planning of operation and exercise by predicting battle field.

Efficient Object Localization using Color Correlation Back-projection (칼라 상관관계 역투영법을 적용한 효율적인 객체 지역화 기법)

  • Lee, Yong-Hwan;Cho, Han-Jin;Lee, June-Hwan
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.263-271
    • /
    • 2016
  • Localizing an object in image is a common task in the field of computer vision. As the existing methods provide a detection for the single object in an image, they have an utilization limit for the use of the application, due to similar objects are in the actual picture. This paper proposes an efficient method of object localization for image recognition. The new proposed method uses color correlation back-projection in the YCbCr chromaticity color space to deal with the object localization problem. Using the proposed algorithm enables users to detect and locate primary location of object within the image, as well as candidate regions can be detected accurately without any information about object counts. To evaluate performance of the proposed algorithm, we estimate success rate of locating object with common used image database. Experimental results reveal that improvement of 21% success ratio was observed. This study builds on spatially localized color features and correlation-based localization, and the main contribution of this paper is that a different way of using correlogram is applied in object localization.

Study on Queue Length Estimation using GPS Trajectory Data (GPS 데이터를 이용한 대기행렬길이 산출에 관한 연구)

  • Lee, Yong-Ju;Hwang, Jae-Seong;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.45-51
    • /
    • 2016
  • Existing real-time signal control system was brought up typical problems which are supersaturated condition, point detection system and loop detection system. For that reason, the next generation signal control system of advanced form is required. Following thesis aimed at calculating queue length for the next generation signal control system to utilize basic parameter of signal control in crossing queue instead of the volume of real-time through traffic. Overflow saturated condition which was appeared as limit of existing system was focused to set-up range. Real-time location information of individual vehicle which is collected by GPS data. It converted into the coordinate to apply shock wave model with an linear equation that is extracted by regression model applied by a least square. Through the calculated queue length and link length by contrast, If queue length exceed the link, queue of downstream intersection is included as queue length that upstream queue vehicle is judeged as affecting downstream intersection. In result of operating correlation analysis among link travel time to judge confidence of extracted queue length, Both of links were shown over 0.9 values. It is appeared that both of links are highly correlated. Following research is significant using real-time data to calculate queue length and contributing to signal control system.

Image Analysis on Upper Gastrointestinal(UGI) Series of Gastric Cancer (위암환자의 위장조영검사 영상분석)

  • Ko, Ju-Young;Cho, Young-Ki;Choi, Ji-Won
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.251-258
    • /
    • 2010
  • Despite significant advance in laparoscopy, upper gastrointestinal (UGI) series is still generally carried out for preoperative localization of gastrectomy. The aim of the study was to compare the accuracy of UGI series and postoperative pathological findings in the diagnosis and localization of gastric cancer. A retrospective review was carried out for 102 patients who underwent gastrectomy between October 2007 and April 2009. Preoperative reports of UGI series were compared with postoperative pathology reports and the accuracy of the preoperative reports was calculated. Two radiographer retrospectively reviewed the analysis of UGI series. postoperative pathology reports of the surgical specimens, were compared with the preoperative reports of the location and extent of the tumor were correct in 81 case("sure", 79.4%) and incorrect in 21 case("failed, 20.6%). In 92 case UGI series revealed intestinal metaplasia (90.2%) at consensus review and these results demonstrate the limitation of the UGI series in the diagnosis of type IIb gastric cancer with size less than 1.0cm and the poor detection of gastric cancer is that the overlying mucous membrane often appears to be normal in these patients. In conclusion, UGI series is accurate the detection of the tumor localization and diagnosis of intestinal metaplasia. However, for the overcome with the limitation of UGI series should be used accurate technique for the region of the stomach. To achieve this goal, it is necessary to determine the changes of the mucus membrane of the stomach and UGI series is gaining acceptance as a standard method for preoperative gastric cancer screening.