• Title/Summary/Keyword: location detection

Search Result 1,591, Processing Time 0.03 seconds

The Effects of Socio-demographic Characteristics on Indonesian Women's Knowledge of HIV/AIDS: A Cross-sectional Study

  • Pradnyani, Putu Erma;Wibowo, Arief;Mahmudah, Mahmudah
    • Journal of Preventive Medicine and Public Health
    • /
    • v.52 no.2
    • /
    • pp.109-114
    • /
    • 2019
  • Objectives: The purpose of this study was to characterize Indonesian women's knowledge of HIV/AIDS and to investigate the effects of socio-demographic characteristics thereupon with the goal of supporting the prevention and early detection of HIV/AIDS. Methods: This cross-sectional study was conducted using secondary data from the standard Indonesian Demographic and Health Survey (IDHS) in 2012. A total of 34 984 subjects ranged in age from 15 years to 49 years. Data were analyzed using the chi-square test and logistic regression to identify the effects of socio-demographic characteristics on Indonesian women's knowledge of HIV/AIDS. Results: All socio-demographic characteristics except marital status were related to knowledge of HIV/AIDS among Indonesian women in the univariate analysis (p<0.05). Multivariate analysis revealed that only age group, education level, location of residence, and wealth index were related to Indonesian women's knowledge of HIV/AIDS (p<0.05). Conclusions: Indonesian women's insufficient knowledge related to HIV/AIDS shows that the provision of accurate and comprehensive information related to HIV/AIDS are components of prevention and control interventions that should be improved. With greater knowledge, women are expected to be more likely to determine their own and their partners' human immunodeficiency virus status and to take appropriate preventive steps.

iBeacon Sinals Utilizing Techniques for the Moving Object and Collision Detection in VR Environment (VR 환경에서의 객체의 이동 및 충돌 감지를 위한 iBeacon 신호의 활용 기법)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.333-334
    • /
    • 2016
  • Recently, with the development of technology for the virtual reality services, the virtual reality technology has been to use various application services. However, because it is difficult to secure a non-Augmented Reality Virtual Reality in this case it has a vision problem that can be fixed in a service only, not removable. In this paper, we propose a technique of application iBeacon signal by applying the technology of the indoor location-based service using a virtual reality system described in iBeacon ensure the mobility in a virtual space, and can detect the collisions with other moving objects.

  • PDF

Detection and location of bolt group looseness using ultrasonic guided wave

  • Zhang, Yue;Li, Dongsheng;Zheng, Xutao
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.293-301
    • /
    • 2019
  • Bolted joints are commonly used in civil infrastructure and mechanical assembly structures. Monitoring and identifying the connection status of bolts is the frontier problem of structural research. The existing research is mainly on the looseness of a single bolt. This article presents a study of assessing the loosening/tightening health state and identifying the loose bolt by using ultrasonic guided wave in a bolt group joint. A bolt-tightening index was proposed for evaluating the looseness of a bolt connection based on correlation coefficient. The tightening/loosening state of the bolt was simulated by changing the bolt torque. More than 180 different measurement tests for total of six bolts were conducted. The results showed that with the bolt torque increases, value of the proposed bolt-tightening index increases. The proposed bolt-tightening index trend was very well reproduced by an analytical expression using a function of the torque applied with an overall percentage error lower than 5%. The developed damage index based on the proposed bolt-tightening index can also be applied to locate the loosest bolt in a bolt group joint. To verify the effectiveness of the proposed method, a bolt group joint experiment with different positions of bolt looseness was performed. Experimental results show that the proposed approach is effective to detect and locate bolt looseness and has a good prospect of finding applications in real-time structural monitoring.

CNN-based Visual/Auditory Feature Fusion Method with Frame Selection for Classifying Video Events

  • Choe, Giseok;Lee, Seungbin;Nang, Jongho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1689-1701
    • /
    • 2019
  • In recent years, personal videos have been shared online due to the popular uses of portable devices, such as smartphones and action cameras. A recent report predicted that 80% of the Internet traffic will be video content by the year 2021. Several studies have been conducted on the detection of main video events to manage a large scale of videos. These studies show fairly good performance in certain genres. However, the methods used in previous studies have difficulty in detecting events of personal video. This is because the characteristics and genres of personal videos vary widely. In a research, we found that adding a dataset with the right perspective in the study improved performance. It has also been shown that performance improves depending on how you extract keyframes from the video. we selected frame segments that can represent video considering the characteristics of this personal video. In each frame segment, object, location, food and audio features were extracted, and representative vectors were generated through a CNN-based recurrent model and a fusion module. The proposed method showed mAP 78.4% performance through experiments using LSVC data.

Impact parameter prediction of a simulated metallic loose part using convolutional neural network

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1199-1209
    • /
    • 2021
  • The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.

Performance of Continuous-wave Coherent Doppler Lidar for Wind Measurement

  • Jiang, Shan;Sun, Dongsong;Han, Yuli;Han, Fei;Zhou, Anran;Zheng, Jun
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.466-472
    • /
    • 2019
  • A system for continuous-wave coherent Doppler lidar (CW lidar), made up of all-fiber structures and a coaxial transmission telescope, was set up for wind measurement in Hefei (31.84 N, 117.27 E), Anhui province of China. The lidar uses a fiber laser as a light source at a wavelength of $1.55{\mu}m$, and focuses the laser beam on a location 80 m away from the telescope. Using the CW lidar, radial wind measurement was carried out. Subsequently, the spectra of the atmospheric backscattered signal were analyzed. We tested the noise and obtained the lower limit of wind velocity as 0.721 m/s, through the Rayleigh criterion. According to the number of Doppler peaks in the radial wind spectrum, a classification retrieval algorithm (CRA) combining a Gaussian fitting algorithm and a spectral centroid algorithm is designed to estimate wind velocity. Compared to calibrated pulsed coherent wind lidar, the correlation coefficient for the wind velocity is 0.979, with a standard deviation of 0.103 m/s. The results show that CW lidar offers satisfactory performance and the potential for application in wind measurement.

Automatic detection of icing wind turbine using deep learning method

  • Hacıefendioglu, Kemal;Basaga, Hasan Basri;Ayas, Selen;Karimi, Mohammad Tordi
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.511-523
    • /
    • 2022
  • Detecting the icing on wind turbine blades built-in cold regions with conventional methods is always a very laborious, expensive and very difficult task. Regarding this issue, the use of smart systems has recently come to the agenda. It is quite possible to eliminate this issue by using the deep learning method, which is one of these methods. In this study, an application has been implemented that can detect icing on wind turbine blades images with visualization techniques based on deep learning using images. Pre-trained models of Resnet-50, VGG-16, VGG-19 and Inception-V3, which are well-known deep learning approaches, are used to classify objects automatically. Grad-CAM, Grad-CAM++, and Score-CAM visualization techniques were considered depending on the deep learning methods used to predict the location of icing regions on the wind turbine blades accurately. It was clearly shown that the best visualization technique for localization is Score-CAM. Finally, visualization performance analyses in various cases which are close-up and remote photos of a wind turbine, density of icing and light were carried out using Score-CAM for Resnet-50. As a result, it is understood that these methods can detect icing occurring on the wind turbine with acceptable high accuracy.

An image-based deep learning network technique for structural health monitoring

  • Lee, Dong-Han;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.799-810
    • /
    • 2021
  • When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.

Study on estimation of propeller cavitation using computer vision (컴퓨터 비전을 이용한 프로펠러 캐비테이션 평가 연구)

  • Taegoo, Lee;Ki-Seong, Kim;Ji-Woo, Hong;Byoung-Kwon, Ahn;Kyung-Jun, Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.128-135
    • /
    • 2022
  • Cavitation occurs inevitably in marine propellers rotating at high speed in the water, which is a major cause of underwater radiated noise. Cavitation-induced noise from propellers rotating at a specific frequency not only reduces the sonar detection capability, but also exposes the ship's location, and it causes very fatal consequences for the survivability of the navy vessels. Therefore cavity inception speed (CIS) is one of the important factors determining the special performance of the ship. In this study, we present a method using computer vision that can detect and quantitatively estimate tip vortex cavitation on a propeller rotating at high speed. Based on the model test results performed in a large cavitation tunnel, the effectiveness of this method was verified.

A Signal Detection of Minimum Variance Algorithm on Linear Constraints

  • Kwan Hyeong Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.8-13
    • /
    • 2023
  • We propose a method for removing interference and noise to estimate target information. In wireless channels, information signals are subject to interference and noise, making it is difficult to accurately estimate the desired signal. To estimate the desired information signal, it is essential to remove the noise and interference from the received signal, extracting only the desired signal. If the received signal noise and interference are not removed, the estimated information signal will have a large error in distance and direction, and the exact location of the target cannot be estimated. This study aims to accurately estimate the desired target in space. The objective is to achieve more presice target estimation than existing methods and enhance target resolution.An estimation method is proposed to improve the accuracy of target estimation. The proposed target estimation method obtains optimal weights using linear constraints and the minimum variance method. Through simulation, the performance of the proposed method and the existing method is analyzed. The proposed method successfully estimated all four targets, while the existing method only estimated two targets. The results show that the proposed method has better resolutiopn and superior estimation capability than the existing method.