• 제목/요약/키워드: localization of recombinant protein

검색결과 33건 처리시간 0.027초

Characterization of Echinostoma cinetorchis endoribonuclease, RNase H

  • Lim, Sung-Bin;Cha, Seok Ho;Jegal, Seung;Jun, Hojong;Park, Seo Hye;Jeon, Bo-Young;Pak, Jhang Ho;Bakh, Young Yil;Kim, Tong-Soo;Lee, Hyeong-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제55권4호
    • /
    • pp.451-455
    • /
    • 2017
  • Echinostoma cinetorchis is an oriental intestinal fluke causing significant pathological damage to the small intestine. The aim of this study was to determine a full-length cDNA sequence of E. cinetorchis endoribonuclease (RNase H; EcRNH) and to elucidate its molecular biological characters. EcRNH consisted of 308 amino acids and showed low similarity to endoribonucleases of other parasites (<40%). EcRNH had an active site centered on a putative DDEED motif instead of DEDD conserved in other species. A recombinant EcRNH produced as a soluble form in Escherichia coli showed enzymatic activity to cleave the 3'-O-P bond of RNA in a DNA-RNA duplex, producing 3'-hydroxyl and 5'-phosphate. These findings may contribute to develop antisense oligonucleotides which could damage echinostomes and other flukes.

Molecular Characterization of Trypanosoma cruzi Tc8.2 Gene Indicates Two Differential Locations for the Encoded Protein in Epimastigote and Trypomastigote Forms

  • Kian, Danielle;Lancheros, Cesar Armando Contreras;Damiani, Igor Alexandre Campos;Fernandes, Tamiris Zanforlin Olmos;Pinge-Filho, Phileno;dos Santos, Marcia Regina Machado;da Silveira, Jose Franco;Nakamura, Celso Vataru;da Silva, Joao Santana;Yamada-Ogatta, Sueli Fumie;Yamauchi, Lucy Megumi
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.483-488
    • /
    • 2015
  • This report describes the molecular characterization of the Tc8.2 gene of Trypanosoma cruzi. Both the Tc8.2 gene and its encoded protein were analyzed by bioinformatics, while Northern blot and RT-PCR were used for the transcripts. Besides, immunolocalization of recombinant protein was done by immunofluorescence and electron microscopy. Analysis indicated the presence of a single copy of Tc8.2 in the T. cruzi genome and 2-different sized transcripts in epimastigotes/amastigotes and trypomastigotes. Immunoblotting showed 70 and 80 kDa polypeptides in epimastigotes and trypomastigotes, respectively, and a differential pattern of immunolocalization. Overall, the results suggest that Tc8.2 is differentially expressed during the T. cruzi life cycle.

도파민 수송체의 기능적 특성 및 발현에 관한 연구 (Functional Characterization and Regional Expression of Dopamine Transporter)

  • 이상훈;이송득;성기욱;이동섭;이용성;고재경
    • 약학회지
    • /
    • 제39권2호
    • /
    • pp.161-168
    • /
    • 1995
  • Brain dopamine systems play a central role in the control of movement, hormone release, and many complex behavior. The action of dopamine at its synapse is terminated predominately by high affinity reuptake into presynaptic terminals by dopamine transporter (DAT). The dopamine transporter(DAT) is membrane protein localized to dopamine-containing nerve terminals and closely related with cocaine abuse, Parkinsonism, and schizophrenia. In present study, the recombinant plasmid pRc/CMV-DAT, constructed by subcloning of a cDNA encoding a bovine DAT into eukaryotic expression vector pRc/CMV, was stably transfected into CV-1 cells(monkey kidney cell line). The DAT activities in the cell lines selected by Geneticin$^{R}$ were determined by measuring the uptake of $[^3H]$-dopamine. The transfected cell lines showed 30-50 fold higher activities than untransfected CV-1 cell line, and this result implies that DAT is well expressed and localized in transfected cells. The transfected cells accumulated $[^3H]$-dopamine in a dose-dependent manner with a $K_{m}$ of 991.6nM. Even though high doses of norepinephrine, epinephrine, serotonin, and choline neurotransmitters inhibited the uptake of $[^3H]$-dopamine, DAT in transfected cell line was proven to be much more specific to dopamine. The psychotropic drugs such as GBR12909, CFT, normifensine, clomipramine, desipramine, and imipramine inhibited significantly the dopamine uptake in tissue culture cells stably transfected with DAT cDNA. Radioactive in situ hybridization was done to map the cellular localization of DAT mRNA-containing cells in the adult rat central nervous system. The strong hybridization signals were detected only in the substantia nigra pars compacta and ventral tegmental area. The restricted anatomical localization of DAT mRNA-containing cells confirms the DAT as a presynaptic marker of dopamine-containing cells in the rat brain.

  • PDF

Characterization of Pv92, a Novel Merozoite Surface Protein of Plasmodium vivax

  • Lee, Seong-Kyun;Wang, Bo;Han, Jin-Hee;Nyunt, Myat Htut;Muh, Fauzi;Chootong, Patchanee;Ha, Kwon-Soo;Park, Won Sun;Hong, Seok-Ho;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • 제54권4호
    • /
    • pp.385-391
    • /
    • 2016
  • The discovery and understanding of antigenic proteins are essential for development of a vaccine against malaria. In Plasmodium falciparum, Pf92 have been characterized as a merozoite surface protein, and this protein is expressed at the late schizont stage, but no study of Pv92, the orthologue of Pf92 in P. vivax, has been reported. Thus, the protein structure of Pv92 was analyzed, and the gene sequence was aligned with that of other Plasmodium spp. using bioinformatics tools. The recombinant Pv92 protein was expressed and purified using bacterial expression system and used for immunization of mice to gain the polyclonal antibody and for evaluation of antigenicity by protein array. Also, the antibody against Pv92 was used for subcellular analysis by immunofluorescence assay. The Pv92 protein has a signal peptide and a sexual stage s48/45 domain, and the cysteine residues at the N-terminal of Pv92 were completely conserved. The N-terminal of Pv92 was successfully expressed as soluble form using a bacterial expression system. The antibody raised against Pv92 recognized the parasites and completely merged with PvMSP1-19, indicating that Pv92 was localized on the merozoite surface. Evaluation of the human humoral immune response to Pv92 indicated moderate antigenicity, with 65% sensitivity and 95% specificity by protein array. Taken together, the merozoite surface localization and antigenicity of Pv92 implicate that it might be involved in attachment and invasion of a merozoite to a new host cell or immune evasion during invasion process.

Expression of Human Papillomavirus Type 16, Prototype and Natural Variant E7 Proteins using Baculovirus Expression System

  • Han, Hee-Sung;Kee, Sun-Ho;Hwang, Soon-Bong;Kim, Hyung-Jun;Cho, Kyung-A;Kim, Yoon-Won;Cho, Min-Kee;Chang, Woo-Hyun
    • 대한바이러스학회지
    • /
    • 제28권1호
    • /
    • pp.53-62
    • /
    • 1998
  • Human papillomavirus (HPV) 16, E7 proteins derived from the prototype (Bac73) and natural variant (Bac101) E7 open reading frame were produced in Sf9 insect cells. The variant E7 gene occurred naturally by substitution mutation at the position of 88 nucleotide, resulting serine instead of asparagine. Using E7 specific monoclonal antibody (VD6), both E7 proteins were identified in recombinant baculovirus infected SF9 cells. Radiolabelling and immunoprecipitation analysis revealed that both E7 proteins were phosphoproteins. Immunostaining result showed that E7 proteins were mainly localized in the cytoplasm. Nuclear form of E7 proteins was also detected after a sequential fractionation procedure for removing chromatin structure. Considering that the VD6 recognition site in E7 protein is located within 10 amino acid at the N-terminus, this region appears to be blocked by the nuclear component. Western blot analysis revealed that nuclear form was more abundant than cytoplasmic E7 proteins. Time course immunostaining showed that the primary location of E7 protein was the nucleus and exported to the cytoplasm as proteins were accumulated. These events occurred similarly in both Bac73 and Bac101 infected Sf9 cells, suggesting that these two proteins may have similar biological functions.

  • PDF

Decreasing effect of an anti-Nfa1 polyclonal antibody on the in vitro cytotoxicity of pathogenic Naegleria fowleri

  • Jeong, Seok-Ryoul;Kang, Su-Yeon;Lee, Sang-Chul;Song, Kyoung-Ju;Im, Kyung-Il;Shin, Ho-Joon
    • Parasites, Hosts and Diseases
    • /
    • 제42권1호
    • /
    • pp.35-40
    • /
    • 2004
  • The nfa 1 gene was cloned from a cDNA library of pathogenic Naegleria fowleri by immunoscreening; it consisted of 360 bp and produced a 13.1 kDa recombinant protein (rNfa1) that showed the pseudopodia-specific localization by immunocytochemistry in the previous study. Based on the idea that the pseudopodia-specific Nfa1 protein mentioned above seems to be involved in the pathogenicity of N. fowleri, we observed the effect of an anti-Nfa1 antibody on the proliferation of N. fowleri trophozoites and the cytotoxicity of N. fowleri trophozoites on the target cells. The proliferation of N. fowleri trophozoites was inhibited after being treated with an anti-Nfa1 polycional antibody in a dose-dependent manner for 48 hrs. By a light microscope, CHO cells co-cultured with N. fowleri trophozoites (group I) for 48 hrs showed severe morphological destruction. On the contrary, CHO cells co-cultured with N. fowleri trophozoites and anti-Nfa1 polyclonal antibody (1:100 dilution) (group II) showed less destruction. In the LDH release assay results, group I showed 50.6% cytotoxicity, and group II showed 39.3%. Consequently, addition of an anti-Nfa1 polyclonal antibody produced a decreasing effect of in vitro cytotoxicity of N. fowleri in a dose-dependent manner.

Stepwise verification of bone regeneration using recombinant human bone morphogenetic protein-2 in rat fibula model

  • Nam, Jung-Woo;Kim, Hyung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제43권6호
    • /
    • pp.373-387
    • /
    • 2017
  • Objectives: The purpose of this study was to introduce our three experiments on bone morphogenetic protein (BMP) and its carriers performed using the critical sized segmental defect (CSD) model in rat fibula and to investigate development of animal models and carriers for more effective bone regeneration. Materials and Methods: For the experiments, 14, 16, and 24 rats with CSDs on both fibulae were used in Experiments 1, 2, and 3, respectively. BMP-2 with absorbable collagen sponge (ACS) (Experiments 1 and 2), autoclaved autogenous bone (AAB) and fibrin glue (FG) (Experiment 3), and xenogenic bone (Experiment 2) were used in the experimental groups. Radiographic and histomorphological evaluations were performed during the follow-up period of each experiment. Results: Significant new bone formation was commonly observed in all experimental groups using BMP-2 compared to control and xenograft (porcine bone) groups. Although there was some difference based on BMP carrier, regenerated bone volume was typically reduced by remodeling after initially forming excessive bone. Conclusion: BMP-2 demonstrates excellent ability for bone regeneration because of its osteoinductivity, but efficacy can be significantly different depending on its delivery system. ACS and FG showed relatively good bone regeneration capacity, satisfying the essential conditions of localization and release-control when used as BMP carriers. AAB could not provide release-control as a BMP carrier, but its space-maintenance role was remarkable. Carriers and scaffolds that can provide sufficient support to the BMP/carrier complex are necessary for large bone defects, and AAB is thought to be able to act as an effective scaffold. The CSD model of rat fibula is simple and useful for initial estimate of bone regeneration by agents including BMPs.

Expression of Translationally Controlled Tumor Protein (TCTP) Gene of Dirofilaria immitis Guided by Transcriptomic Screening

  • Fu, Yan;Lan, Jingchao;Wu, Xuhang;Yang, Deying;Zhang, Zhihe;Nie, Huaming;Hou, Rong;Zhang, Runhui;Zheng, Wanpeng;Xie, Yue;Yan, Ning;Yang, Zhi;Wang, Chengdong;Luo, Li;Liu, Li;Gu, Xiaobin;Wang, Shuxian;Peng, Xuerong;Yang, Guangyou
    • Parasites, Hosts and Diseases
    • /
    • 제52권1호
    • /
    • pp.21-26
    • /
    • 2014
  • Dirofilaria immitis (heartworm) infections affect domestic dogs, cats, and various wild mammals with increasing incidence in temperate and tropical areas. More sensitive antibody detection methodologies are required to diagnose asymptomatic dirofilariasis with low worm burdens. Applying current transcriptomic technologies would be useful to discover potential diagnostic markers for D. immitis infection. A filarial homologue of the mammalian translationally controlled tumor protein (TCTP) was initially identified by screening the assembled transcriptome of D. immitis (DiTCTP). A BLAST analysis suggested that the DiTCTP gene shared the highest similarity with TCTP from Loa loa at protein level (97%). A histidine-tagged recombinant DiTCTP protein (rDiTCTP) of 40 kDa expressed in Escherichia coli BL21 (DE3) showed immunoreactivity with serum from a dog experimentally infected with heartworms. Localization studies illustrated the ubiquitous presence of rDiTCTP protein in the lateral hypodermal chords, dorsal hypodermal chord, muscle, intestine, and uterus in female adult worms. Further studies on D. immitis-derived TCTP are warranted to assess whether this filarial protein could be used for a diagnostic purpose.

Molecular Cloning of Plasmodium vivax Calcium-Dependent Protein Kinase 4

  • Choi, Kyung-Mi;Kim, Jung-Yeon;Moon, Sung-Ung;Lee, Hyeong-Woo;Sattabongkot, Jetsumon;Na, Byoung-Kuk;Kim, Dae-Won;Suh, Eun-Jung;Kim, Yeon-Joo;Cho, Shin-Hyeong;Lee, Ho-Sa;Rhie, Ho-Gun;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • 제48권4호
    • /
    • pp.319-324
    • /
    • 2010
  • A family of calcium-dependent protein kinases (CDPKs) is a unique enzyme which plays crucial roles in intracellular calcium signaling in plants, algae, and protozoa. CDPKs of malaria parasites are known to be key regulators for stage-specific cellular responses to calcium, a widespread secondary messenger that controls the progression of the parasite. In our study, we identified a gene encoding Plasmodium vivax CDPK4 (PvCDPK4) and characterized its molecular property and cellular localization. PvCDPK4 was a typical CDPK which had well-conserved N-terminal kinase domain and C-terminal calmodulin-like structure with 4-EF hand motifs for calcium-binding. The recombinant protein of EF hand domain of PvCDPK4 was expressed in Echerichia coli and a 34 kDa product was obtained. Immunofluorescence assay by confocal laser microscopy revealed that the protein was expressed at the mature schizont of P. vivax. The expression of PvCDPK4-EF in schizont suggests that it may participate in the proliferation or egress process in the life cycle of this parasite.

인체 Jurkat T 세포에 있어서 세포주기에 따른 MCAK 단백질의 세포 내 위치변화 (Differential Intracellular Localization of Mitotic Centromere-associated Kinesin (MCAK) During Cell Cycle Progression in Human Jurkat T Cells)

  • 전도연;류석우;김수정;김영호
    • 생명과학회지
    • /
    • 제15권2호
    • /
    • pp.253-260
    • /
    • 2005
  • 인체 MCAK 단백질을 Escherichia. coli에서 재조합 단백질로 발현하였다. 이를 SDS-PAGE 후 electroelution으로 정제하고 항원으로 사용하여 rat에서 다클론성 항체생성을 유도한 결과, 생성된 항체는 Western blot analysis에 의해 인체 MCAK 단백질 (81 kDa)을 특이적으로 인식할 수 있었으며, Jurkat T cells과 293T cells에 있어서 MCAK 단백질의 대부분이 핵 내에 위치함을 확인할 수 있었다. 세포주기에 따른 MCAK 단백질의 발현양의 변화를 조사하기 위해, Jurkat T cells을 Hydroxy urea 또는 Nocodazole의 처리로 $G_{1}/S$ boundary 그리고 $G_{2}/M$ boundary에 blocking하고 이로부터 release 시키는 시간을 달리하여 다양한 세포주기상에 위치한 Jurkat T cells을 확보하였다. 각각의 Jurkat T cells로부터 cell lysate를 얻어서 Western blot analysis를 시도한 결과, MCAK 발현양은 S phase에서 가장 높았으며 MCAK의 SDS-PAGE상의 mobility가 81 kDa에서 84 kDa로 shift됨을 확인하였다. MCAK의 전기영동상의 mobility shift에 의한 slow moving $p84^{HsMCAK}$는 S phase 후반부터 나타나기 시작하며 $G_{2}/M$ phase에 최대였고 $G_{1}$, phase에서는 확인되지 않았다. 이는 세포주기에 따라 MCAK의 단백질의 인산화 양상이 달라짐을 시사한다. 생성된 항체를 이용한 Immunocytochemical analysis의 결과, 인체 MCAK 단백질은 세포주기의 interphase에서는 주로 중심체와 핵에 존재하며, M phase의 각 단계에 따라서 spindle pole, centromere, spindle fiber 또는 midbody에 존재함을 확인하였다. 이러한 연구 결과는 E. coli에서 발현된 재조합 HsMCAK 단백질을 항원으로 하여 rat에서 생산한 다클론성 항체가 HsMCAK 단백질을 특이적으로 인식할 수 있음과 또한 HsMCAK 단백질의 인산화를 나타내는 SDS-PAGE상의 mobility-shift가 $G_{2}/M$ phase에 최대에 도달하는 양상으로 세포주기에 따라 변동됨을 나타내며, HsMCAK의 인산화와 HsMCAK의 세포 내 위치간의 관련성을 시사한다. 아울러 이러한 연구결과는 hamster 및 Xenopus 등에서 주로 연구되고 있는 MCAK의 세포주기상의 주요기능이 인체세포에도 적용될 수 있음을 시사한다.