DOI QR코드

DOI QR Code

Differential Intracellular Localization of Mitotic Centromere-associated Kinesin (MCAK) During Cell Cycle Progression in Human Jurkat T Cells

인체 Jurkat T 세포에 있어서 세포주기에 따른 MCAK 단백질의 세포 내 위치변화

  • Jun Do Youn (Institute of Genetic Engineering, Kyungpook National University) ;
  • Rue Seok Woo (Laboratory of Immunobiology, Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Kim Su-Jung (Laboratory of Immunobiology, Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Kim Young Ho (Laboratory of Immunobiology, Department of Microbiology, College of Natural Sciences, Kyungpook National University)
  • 전도연 (경북대학교 유전공학연구소) ;
  • 류석우 (경북대학교 자연과학대학 미생물학과 면역생물학연구실) ;
  • 김수정 (경북대학교 자연과학대학 미생물학과 면역생물학연구실) ;
  • 김영호 (경북대학교 자연과학대학 미생물학과 면역생물학연구실)
  • Published : 2005.04.01

Abstract

Mitotic centromere-associated kinesin (MCAK), which is a member of the Kin I (internal motor domain) subfamily of kinesin-related proteins, is known to play a role in mitotic segregation of chromosome during M phase of the cell cycle. In the present study, we have produced a rat polyclonal antibody using human MCAK (HsMCAK) expressed in E. coli as the antigen. The antibody specifically recognized the HsMCAK protein (81 kDa), and could detect its nuclear localization in human Jurkat T cells and 293T cells by Western blot analysis. The specific stage of the cell cycle was obtained through blocking by either hydroxyl urea or nocodazole and subsequent releasing from each blocking for 2, 4, and 7 h. While the protein level of HsMCAK reached a maximum level in the S phase with slight decline in the $G_{2}-M$ phase, the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$ began to be induced in the late S phase and reached a maximum level in the $G_{2}/M $ phase, and then it disappeared as the cells enter into the $G_{1}$ phase. Immunocytochemical analysis revealed that HsMCAK protein localized to centrosome and nucleus at the interphase, whereas it appeared to localize to the spindle pole, centromere of the condensed mitotic DNA, spindle fiber, or midbody, depending on the specific stage of the M phase. These results demonstrate that a rat polyclonal antibody raised against recombinant HsMCAK expressed in E. coli specifically detects human MCAK, and indicate that the electrophoretic mobility shift from $p81^{MCAK}\;to\;p84^{MCAK}$, which may be associated with its differential intracellular localization during the cell cycle, fluctuates with a maximum level of the shift at the $G_{2}-M$ phase.

인체 MCAK 단백질을 Escherichia. coli에서 재조합 단백질로 발현하였다. 이를 SDS-PAGE 후 electroelution으로 정제하고 항원으로 사용하여 rat에서 다클론성 항체생성을 유도한 결과, 생성된 항체는 Western blot analysis에 의해 인체 MCAK 단백질 (81 kDa)을 특이적으로 인식할 수 있었으며, Jurkat T cells과 293T cells에 있어서 MCAK 단백질의 대부분이 핵 내에 위치함을 확인할 수 있었다. 세포주기에 따른 MCAK 단백질의 발현양의 변화를 조사하기 위해, Jurkat T cells을 Hydroxy urea 또는 Nocodazole의 처리로 $G_{1}/S$ boundary 그리고 $G_{2}/M$ boundary에 blocking하고 이로부터 release 시키는 시간을 달리하여 다양한 세포주기상에 위치한 Jurkat T cells을 확보하였다. 각각의 Jurkat T cells로부터 cell lysate를 얻어서 Western blot analysis를 시도한 결과, MCAK 발현양은 S phase에서 가장 높았으며 MCAK의 SDS-PAGE상의 mobility가 81 kDa에서 84 kDa로 shift됨을 확인하였다. MCAK의 전기영동상의 mobility shift에 의한 slow moving $p84^{HsMCAK}$는 S phase 후반부터 나타나기 시작하며 $G_{2}/M$ phase에 최대였고 $G_{1}$, phase에서는 확인되지 않았다. 이는 세포주기에 따라 MCAK의 단백질의 인산화 양상이 달라짐을 시사한다. 생성된 항체를 이용한 Immunocytochemical analysis의 결과, 인체 MCAK 단백질은 세포주기의 interphase에서는 주로 중심체와 핵에 존재하며, M phase의 각 단계에 따라서 spindle pole, centromere, spindle fiber 또는 midbody에 존재함을 확인하였다. 이러한 연구 결과는 E. coli에서 발현된 재조합 HsMCAK 단백질을 항원으로 하여 rat에서 생산한 다클론성 항체가 HsMCAK 단백질을 특이적으로 인식할 수 있음과 또한 HsMCAK 단백질의 인산화를 나타내는 SDS-PAGE상의 mobility-shift가 $G_{2}/M$ phase에 최대에 도달하는 양상으로 세포주기에 따라 변동됨을 나타내며, HsMCAK의 인산화와 HsMCAK의 세포 내 위치간의 관련성을 시사한다. 아울러 이러한 연구결과는 hamster 및 Xenopus 등에서 주로 연구되고 있는 MCAK의 세포주기상의 주요기능이 인체세포에도 적용될 수 있음을 시사한다.

Keywords

References

  1. Adams, R. L. and J. G. Lindsay. 1967. Hydroxyurea: reversal of inhibition and use as a cell-synchronizing agent. J. Biol. Chem. 242, 1314-1317
  2. Andrews, P. D., Y. Ovechkina, N. Morrice, M. Wagenbach, K. Duncan, L. Wordeman and J. R. Swedlow. 2004. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253-268 https://doi.org/10.1016/S1534-5807(04)00025-5
  3. Bairoch, A., P. Bucher and K. Hofmann. 1996. The PROSITE database, its status in 1995. Nucleic Acids Res. 24, 189-196 https://doi.org/10.1093/nar/24.1.189
  4. Bloom, G. S. and S. A. Endow. 1995. Motor proteins 1: kinesins. Protein Prof 2, 1109-1171
  5. Brady, S. T. 1995. Biochemical and functional diversity of microtubule motors in the nervous system. Trends Cell Biol. 5, 159-164 https://doi.org/10.1016/S0962-8924(00)88980-1
  6. De Brabander, M. J., R. M. Van de Veire, F. E. Aerts, M. Borgers, and P. A Janssen. 1976. The effects of methyl [5-(2-thienylcarbonyl)-lH-benzimidazol- 2-yl]carbamate (R 17934; NSC238159), a new synthetic antitumoral drug interfering with microtubles, on mammalian cells cultured in vitro. Cancer Res. 36, 905-916
  7. Desai, A., S. Verma, T. J. Mitchison and C. F. Walczak. 1999. Kin I kinesins are michrotuble-destabilizing enzymes. Cell 96, 69-78 https://doi.org/10.1016/S0092-8674(00)80960-5
  8. Endow, S. A. 1991. Determinants of motor polarity in the kinesin proteins. Trends Biochem. Sci. 16, 221-225 https://doi.org/10.1016/0968-0004(91)90089-E
  9. Hunter, A. W., M. Caplow, D. L. Coy, W. O. Hancock, S. Diez, L. Wordeman and J. Howard. 2003. The kinesinrelated protein MCAK is a microtubule depolymerase that form an ATP-hydrolysing complex at microtubule ends. Mol. Cell 11, 445-457 https://doi.org/10.1016/S1097-2765(03)00049-2
  10. Kim, I. -G., D. Y. Jun, U. Sohn and Y. H. Kim. 1997. Ooning and expression of human mitotic centromere-associated kinesin gene. Biochim. Biophys. Acta 1359, 181-186 https://doi.org/10.1016/S0167-4889(97)00103-1
  11. Kim, Y. H., T. J. Proust, M. A Buchholz, F. J. Chrest and A. A. Nordin. 1992. Expression of the murine homologue of the cell cycle control protein $p34^{cdc2} $ in T lymphocytes. J. Immunol. 149, 17-23
  12. Kim, Y. H., T. J. Proust, M. A Buchholz, F. J. Chrest and A. A. Nordin. 1994. Upregulation of c-myc induces the gene expression of the human homologues $p34^{cdc2}$ and cyclindependent kinase-2 in T lymphocytes. J. Immunol. 152, 4328-4335
  13. Lan, W., X. Zhang, S. L. Kline-Smith, S. E. Rosasco, G. A. Barrett-Wilt, J. Shabanowitz, D. F. Hunt, C. E. Walczak and P. T. Stukenberg. 2004. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273-286 https://doi.org/10.1016/j.cub.2004.01.055
  14. Lin, K. -H. and S. - Y. Cheng. 1991. An efficient method to purify active eukaryotic proteins from the inclusion bodies in Escherichia coli. Biotechniques 11, 748-753
  15. Ling, W., P. Rayman, R. Uzzo, P. Clark, H. J. Kim, R. Tubbs, A. Novick, R. Bukowski, T. Hamilton and J. Finke. 1998. Impaired activation of NFkB in T cells from a subset of renal cell carcinoma patients is mediated by inhibition of phosphorylation and degradation of the inhibitor, IkBa. Blood 92, 1334-1341
  16. Moor, A. and L. Wordeman. 2004. The mechanism, function, and regulation of depolymerizing kinesisns during mitosis. Trends Cell Biol. 14, 537-546 https://doi.org/10.1016/j.tcb.2004.09.001
  17. Ohi, R., M. L. Coughlin, W. S. Lane and T. J. Mitchison. 2003. An inner centromere protein that stimulates the microtubule depolymerizing activity of a Kin I kinesin. Dev Cell. 5, 309-321 https://doi.org/10.1016/S1534-5807(03)00229-6
  18. Park, H. W., D. Y. Jun and Y. H. Kim. 2002. Apoptotic activity of insect pathogenic fungus Paecilomyces japonica toward human acute leukemia Jurkat T cells is associated with mitochondria-dependent caspase-3 activation regulated by Bcl-2. J. Micro. Biol. 12, 950-956
  19. Saraste, M., P. R. Sibbald and A. Wittinghofer. 1990. The P-Ioop, a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430-434 https://doi.org/10.1016/0968-0004(90)90281-F
  20. Sherr, C. J. 1996. Cancer cell cycles. Science 274, 1672-1677 https://doi.org/10.1126/science.274.5293.1672
  21. Studier, F. W., A. H. Rosenberg, J. J. Dunn and J. W. Dubendorff. 1990. Use of T7 RNA polymerase to direct expression of cloned gene, p 60-89. In D. Goeddel (ed.), Methods in Enzymology, vol 185. Academic press, Sandiego, Califonia, USA
  22. Walczak, C. E. and T. J. Mitchison. 1996. XKCMI: a Xenpus kinesin-related protein that regulates microtubule dynamics during mitosis spindle assembly. Cell 85, 943-946 https://doi.org/10.1016/S0092-8674(00)81295-7
  23. Walker, J. E., M. Saraste, M. J. Runswick and N. J. Gay. 1982. Distantly related sequences in the alpha- and betasubunits of ATP synthase, myosin, kinases and other ATP requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945-951
  24. Wordeman, L. and T. J. Mitchison. 1995. Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J. Cell Biol. 128, 95-105 https://doi.org/10.1083/jcb.128.1.95
  25. Zhou F. F., Y. Xue, G. L. Chen and X. Yao. 2004. GPS: a novel group-based phosphorylation predicting and scoring method. Biochem. Biaphys. Res. Commun. 325, 1443-1448 https://doi.org/10.1016/j.bbrc.2004.11.001