• Title/Summary/Keyword: localization library

Search Result 31, Processing Time 0.03 seconds

Molecular Cloning and Functional Analysis of Rice (Oryza sativa L.) OsNDR1 on Defense Signaling Pathway

  • Lee, Joo-Hee;Kim, Sun-Hyung;Jung, Young-Ho;Kim, Jung-A;Lee, Mi-Ok;Choi, Pil-Gyu;Choi, Woo-Bong;Kim, Kyung-Nam;Jwa, Nam-Soo
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.149-157
    • /
    • 2005
  • A novel rice (Oryza sativa L.) gene, homologous to Arabidopsis pathogenesis-related NDR1 gene, was cloned from cDNA library prepared from 30 min Magnaporthe grisea -treated rice seedling leaves, and named as OsNDR1. OsNDR1 encoded a 220-aminoacid polypeptide and was highly similar to the Arabidopsis AtNDR1 protein. OsNDR1 is a plasma membrane (PM)-localized protein, and presumes through sequence analysis and protein localization experiment. Overexpression of OsNDR1 promotes the expression of PBZ1 that is essential for the activation of defense/stressrelated gene. The OsNDR1 promoter did not respond significantly to treatments with either SA, PBZ, or ETP. Exogenously applied BTH induces the same set of SAR genes as biological induction, providing further evidence for BTH as a signal. Presumably, BTH is bound by a receptor and the binding triggers a signal transduction cascade that has an ultimate effect on transcription factors that regulate SAR gene expression. Thus OsNDR1 may act as a transducer of pathogen signals and/or interact with the pathogen and is indeed another important step in clarifying the component participating in the defense response pathways in rice.

Differential expression and in situ localization of a pepper defensin (CADEFl) gene in response to pathogen infection, abiotic elicitors and environmental stresses in Capsium annuum

  • Do, Hyun-Mee;Lee, Sung-Chul;Jung, Ho-Won;Hwang, Byung-Kook
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.78.2-79
    • /
    • 2003
  • Pepper defensin ( CADEFl) clone was isolated from cDNA library constructed from pepper leaves infected with avirulent strain Bv5-4a of Xanthomonu campestris pv. vesicatoria. The deduced amino acid sequence of CADEFl is 82-64% identical to that of other plant defensins. Putative protein encoded by CADEFl gene consists of 78 amino acids and 8 conserved cysteine residues to form four structure-stabilizing disulfide bridges. Transcription of the CADEF1 gene was earlier and stronger induced by X campestris pv. vesicatoria infection in the incompatible than in the compatible interaction. CADEF1 mRNA was constitutively expressed in stem, root and green fruit of pepper. Transcripts of CADEFl gene drastically accumulated in pepper leaf tissues treated With Salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), hydrogen Peroxide (H$_2$O$_2$), benzothiadiazole (BTH) and DL-${\beta}$-amino-n-butyric acid (BABA). In situ hybridization results revealed that CADEF1 mRNA was localized in the phloem areas of vascular bundles in leaf tissues treated with exogenous SA, MeJA and ABA. Strong accumulation of CADEF1 mRNA occurred in pepper leaves in response to wounding, high salinity and drought stress. These results suggest that bacterial pathogen infection, abiotic elicitors and some environmental stresses may play a significant role in signal transduction pathway for CADEF1 gene expression.

  • PDF

Real-time Human Pose Estimation using RGB-D images and Deep Learning

  • Rim, Beanbonyka;Sung, Nak-Jun;Ma, Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.113-121
    • /
    • 2020
  • Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.

Identification of Novel Mitochondrial Membrane Protein (Cdf 3) from Arabidopsis thaliana and its Functional Analysis in a Yeast System

  • Kim, Kyung-Min;Jun, Do-Youn;Kim, Sang-Kook;Kim, Chang-Kil;Kim, Byung-Oh;Kim, Young-Ho;Park, Wan;Sohn, Jae-Keun;Hirata, Aiko;Kawai-Yamada, Maki;Uchimiya, Hirofumi;Kim, Dai-Hee;Sul, Ill-Whan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.891-896
    • /
    • 2007
  • We screened the Arabidopsis cDNA library to identify functional suppressors of AtBI-1, a gene that suppresses cell death induced by Bax gene expression in yeast. Cdf 3 encodes a 118-amino-acid protein with a molecular mass of 25 kDa. This protein has two uncharacterized domains at amino acids residues 5-64 and 74-117. In the present study, CDF3 was found to induce growth defects in yeast and arrested yeast growth, although the cell-growth defect was somewhat less than that of Bax. Its localization in the inner mitochondria was essential for suppression of yeast-cell proliferation. The morphological abnormality of the intracellular network, which is a hallmark of AtBI-1, was attenuated by Cdf3 expression.

Screening of Domain-specific Target Proteins of Polo-like Kinase 1: Construction and Application of Centrosome/Kinetochore-specific Targeting Peptide

  • Ji, Jae-Hoon;Jang, Young-Joo
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.709-716
    • /
    • 2006
  • Mammalian polo-like kinase 1 (Plk1) acts at various stages in early and late mitosis. Plk1 localizes at the centrosome and maintains this position through mitosis. Thereafter Plk1 moves to the kinetochore and midbody region, important sites during chromosome separation and cytokinesis. The catalytic domain of Plk1 is in the N-terminus region, whereas the non-catalytic region in the C-terminus of Plk1 has a conserved motif, named the Polobox. This motif is critical for Plk localization. EGFP proteins fused with the N-terminus and C-terminus of Plk1 localize in the nucleus and centrosomes, respectively. The core sequences of the polo-box (50 amino acids) also localize in Plk1 target organelles. To screen for domain-specific target proteins of Plk1, we constructed an N-terminal domain and a tandem repeat polo-box motif, and used them as templates in a yeast two-hybrid screen. The HeLa cell cDNA library indicated several proteins including the centrosome/kinetochore components or regulators, to be characterized as positive clones. Through in vitro protein binding analyses, we confirmed an interaction between these proteins and Plk1. The data reported from this study indicate that the N- and C- termini of Plk1 may function through recruitment and/or activation of domain-specific target proteins in dividing cells. Additionally, tandem repeats of the conserved core motif of the polo-box are sufficient for targeting and may be useful as a centrosome/kinetochore-specific targeting peptide.

Localization of Weel and Other Cell Cycle Machinery in the Mouse Primordial and Growing Follicles

  • Park, Chang-Eun;Kim, Young-Hoon;Jeon, Eun-Hyun;Lee, Suman;Lee, Sook-Hwan;Lee, Kyung-Ah
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.02a
    • /
    • pp.21-23
    • /
    • 2003
  • Mechanisms regulate the arrest and growth of the resting primordial follicles are very poorly understood. To elucidate genes involved in the early folliculogenesis, we conducted suppression subtractive hybridization using mRNA from day1 and day5 ovaries and selected weel for further analysis, since it was most frequent gene in the day1-subtracted cDNA library (1). Expression of weel and correlated components of the cell cycle machinery, such as cdc2, cyclin B1, cdc25C, and phosphorylated cdc2 was evaluated by immunohistochemistry. In primordial follicles, expression of weel, cdcw, and cyclin B1 was cytoplasmic in oocytes, but phosphorylated cdc2 was weakly expressed in oocytes. While cdc25C expression was in ovarian somatic and in some theca cells. None of components was expressed in the pre-granulosa cells of the primordial follicles, while weel weakly, and cdc2 and cyclin B1 was strongly expressed in the granulosa cells of the growing follicles. Results from the present study suggest that 1) the mejotic arrest of the oocytes may not due to of cell cycle machinery, and 2) the weel may arrest meiosis by sequestering cdc2 and cyclin B1 in the cytoplasm by protein-protein interactions and/or by inhibitory phosphorylation.

  • PDF

Decreasing effect of an anti-Nfa1 polyclonal antibody on the in vitro cytotoxicity of pathogenic Naegleria fowleri

  • Jeong, Seok-Ryoul;Kang, Su-Yeon;Lee, Sang-Chul;Song, Kyoung-Ju;Im, Kyung-Il;Shin, Ho-Joon
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • The nfa 1 gene was cloned from a cDNA library of pathogenic Naegleria fowleri by immunoscreening; it consisted of 360 bp and produced a 13.1 kDa recombinant protein (rNfa1) that showed the pseudopodia-specific localization by immunocytochemistry in the previous study. Based on the idea that the pseudopodia-specific Nfa1 protein mentioned above seems to be involved in the pathogenicity of N. fowleri, we observed the effect of an anti-Nfa1 antibody on the proliferation of N. fowleri trophozoites and the cytotoxicity of N. fowleri trophozoites on the target cells. The proliferation of N. fowleri trophozoites was inhibited after being treated with an anti-Nfa1 polycional antibody in a dose-dependent manner for 48 hrs. By a light microscope, CHO cells co-cultured with N. fowleri trophozoites (group I) for 48 hrs showed severe morphological destruction. On the contrary, CHO cells co-cultured with N. fowleri trophozoites and anti-Nfa1 polyclonal antibody (1:100 dilution) (group II) showed less destruction. In the LDH release assay results, group I showed 50.6% cytotoxicity, and group II showed 39.3%. Consequently, addition of an anti-Nfa1 polyclonal antibody produced a decreasing effect of in vitro cytotoxicity of N. fowleri in a dose-dependent manner.

ZNF435, a Novel Human SCAN-containing Zinc Finger Protein, Inhibits AP-1-mediated Transcriptional Activation

  • Gu, Xing;Zheng, Mei;Fei, Xiangwei;Yang, Zhenxing;Li, Fan;Ji, Chaoneng;Xie, Yi;Mao, Yumin
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.316-322
    • /
    • 2007
  • Zinc finger transcription factor genes are a significant fraction of the genes in the vertebrate genome. Here we report the isolation and characterization of a human zinc finger-containing gene, ZNF435, from a fetal brain cDNA library. ZNF435 cDNA is 1290 base pairs in length and contains an open reading frame encoding 349 amino acids with four C2H2-type zinc fingers at its carboxyl terminus and a SCAN motif at its amino terminus. RT-PCR results showed that ZNF435 was expressed in all tested tissues. A ZNF435-GFP fusion protein was located in the nucleus and the four zinc fingers acted as nuclear localization signals (NLSs). ZNF435 was found to be capable of homo-association, and this effect was independent of its zinc fingers. Furthermore, ZNF435 proved to be a transcription repressor as its overexpression in AD293 cells inhibited the transcriptional activities of AP-1.

EST Profiling for Seed-hair Characteristic and Development of EST-SSR and SNP Markers in Carrot (당근 종모 형질 관련 EST profiling과 이를 이용한 EST-SSR 및 SNP 마커 개발)

  • Oh, Gyu-Dong;Hwang, Eun-Mi;Shim, Eun-Jo;Jeon, Sang-Jin;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.1025-1038
    • /
    • 2010
  • Carrot ($Daucus$ $carota$ L. var. $sativa$) is one of the most widely used crops in the world. Moreover it is an important crop because of its high content of ${\beta}$-carotene, well-known as the precursor of vitamin A carotenoid. However, seed-hair which is generated in epidermal cell of seeds inhibits absorption and germination. For that reason, carrot seeds are commercialized after mechanical hair removal process. To overcome such cumbersome weaknesses, new breeding program for developing hairless-seed carrot cultivar has been needed. Therefore, in this study, cDNA libraries from seeds of short-hair seed phenotype CT-ATR615 OP 666-13line and hairy seed CT-ATR615 OP-CK1-9 line were constructed and expression patterns related to generation of seed-hair were analyzed by comparison of EST sequences. Differential EST sequence results between two lines were classified into FunCat functional categories based on the results of BlastX search. Higher expression quantities belonging to metabolic category were shown on short-hair seed line than hairy-seed one. Differential expression quantities between those two lines in the protein folding and stabilization, subcellular localization categories were supposed to contribute variously on the generation of seed-hair. We confirmed 50 and 59 SSR sites, and 2 SNP sites by analyzing EST sequences in two lines; thereafter, we designed SNP and SSR primer sets from these EST sequence information as a molecular marker. These markers are thought to be used in research of molecular markers for classification of carrot family and related to various traits, as well as seed-hair characteristic.

Construction of Web-Based Database for Anisakis Research (고래회충 연구를 위한 웹기반 데이터베이스 구축)

  • Lee, Yong-Seok;Baek, Moon-Ki;Jo, Yong-Hun;Kang, Se-Won;Lee, Jae-Bong;Han, Yeon-Soo;Cha, Hee-Jae;Yu, Hak-Sun;Ock, Mee-Sun
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.411-415
    • /
    • 2010
  • Anisakis simplex is one of the parasitic nematodes, and has a complex life cycle in crustaceans, fish, squid or whale. When people eat under-processed or raw fish, it causes anisakidosis and also plays a critical role in inducing serious allergic reactions in humans. However, no web-based database on A. simplex at the level of DNA or protein has been so far reported. In this context, we constructed a web-based database for Anisakis research. To build up the web-based database for Anisakis research, we proceeded with the following measures: First, sequences of order Ascaridida were downloaded and translated into the multifasta format which was stored as database for stand-alone BLAST. Second, all of the nucleotide and EST sequences were clustered and assembled. And EST sequences were translated into amino acid sequences for Nuclear Localization Signal prediction. In addition, we added the vector, E. coli, and repeat sequences into the database to confirm a potential contamination. The web-based database gave us several advantages. Only data that agrees with the nucleotide sequences directly related with the order Ascaridida can be found and retrieved when searching BLAST. It is also very convenient to confirm contamination when making the cDNA or genomic library from Anisakis. Furthermore, BLAST results on the Anisakis sequence information can be quickly accessed. Taken together, the Web-based database on A. simplex will be valuable in developing species specific PCR markers and in studying SNP in A. simplex-related researches in the future.